位置: IT常识 - 正文

数据挖掘(2.3)--数据预处理(数据挖掘期末考试大纲)

编辑:rootadmin
数据挖掘(2.3)--数据预处理

目录

三、数据集成和转换

1.数据集成 

2.数据冗余性 

2.1 皮尔森相关系数

2.2卡方检验 

3.数据转换

四、数据的规约和变换

1.数据归约

2数据离散化


三、数据集成和转换1.数据集成 

推荐整理分享数据挖掘(2.3)--数据预处理(数据挖掘期末考试大纲),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:数据挖掘和数据分析的区别与联系,数据挖掘工程师,数据挖掘技术,数据挖掘期末考试大纲,数据挖掘名词解释,数据挖掘是做什么的,数据挖掘是做什么的,数据挖掘的四种基本方法,内容如对您有帮助,希望把文章链接给更多的朋友!

数据集成是将不同来源的数据整合并一致地存储起来的过程。

不同来源的数据可能有不同的格式、不同的元信息和不同的表示方式等。

首先需要将它们变成一致的形式。

通常这个过程牵涉到数据架构的集成,处理属性值冲突,处理数据冗余性,对数据进行转化等的处理过程。

其中两个主要的问题:数据冗余和数据转换。

2.数据冗余性 

原因:

数据冗余可能由许多技术和业务上的原因导致,

同一属性或对象在不同的数据库中的名称可能是不同的,

某些属性可能是由其他属性导出的。

2.1 皮尔森相关系数

皮尔森相关系数是计算两个数数值向量之间的相关性

此图,纯手工技艺。

当相关系数大于0时,称两个向量正相关;

数据挖掘(2.3)--数据预处理(数据挖掘期末考试大纲)

当相关系数小于0时,称两个向量负相关;

当相关系数等于0时,称两个向量不相关。

容易得出,相关系数的取值范围是[-1,1]。

热力图展示环节 (matplotlib库的问题,导致热力图显示不全,建议升版本或降低版本)

python使用corr()函数计算数据中两两元素的皮尔系数 

2.2卡方检验 

 对于非数值型的变量,计算其相关性可以使用卡方检验方法进行,卡方检验的计算方式为:

求和是对每一种不同的变量取值情形进行的,Oi是实际观测到的概率,而Ei是在变量彼此独立的假设下该情况发生概率的估计。

3.数据转换

数据在集成过程中很多情况下需要进行转换,数据转换包括平滑、聚合、泛化、规范化、属性和特征的重构等操作。 (1)数据平滑。数据平滑是将噪声从数据中移除的过程。数据平滑通常是对数据本身进行的,如在连续性的假设下,对时间序列进行平滑,以降低异常点的影响;数据平滑有时也指对概率的平滑。 (2)数据聚合。数据聚合是将数据进行总结描述的过程。数据聚合的目的一般是为了对数据进行统计分析,数据立方体和在线分析处理(OLAP)都是数据聚合的形式。 (3)数据泛化。数据泛化是将数据在概念层次上转化为较高层次的概念的过程。 (4)数据规范化。数据规范化是将数据的范围变换到一个比较小的、确定的范围的过程。数据规范化在一些机器学习方法的预处理中比较常用,可以改善分类效果和抑制过学习。常用的数据规范化方法有最小最大规范化、2-score规范化和十进制比例规范化等。 

 如下的公式是最小最大规范化的例子,它将数据映射到[0,1] 区间。 z-score规范化使用数据的均值μ和标准差σ来将数据转化到某个区间,如下的公式为z-score标准化的例子,规范化后的数据均值为0,标准差为1。

 

十进制比例规范化使用数据绝对值的极值进行规范化.对数据仅使用十进制放缩的方式进行规范化。如要将466,33,- 100,-10这几个数进行规范化,结果为:0.466,0.033,-0.1,0.01。

四、数据的规约和变换1.数据归约

数据归约是用更简化的方式来表示数据集,使得简化后的表示可以用较少的数据量来产生与挖掘全体数据类似的效果。数据归约可以从几个方面入手:

如果对数据的每个维度的物理意义很清楚,就可以舍弃某些无用的维度,并使用平均值、汇总和计数等方式来进行聚合表示,这种方式称为数据立方体聚合如果数据只有有些维度对数据挖掘有益,就可以去除不重要的维度,保留对挖掘有帮助的维度,这种方式称为维度归约;如果数据具有潜在的相关性,那么数据实际的维度可能并不高,可以用变换的方式,用低维的数据对高维数据进行近似的表示,这种方式称为数据压缩;另外一种处理数据相关性的方式是将数据表示为不同的形式来减小数据量,如聚类、回归等,这种方式称为数据块消减。2数据离散化

为什么要数据离散化?

计算机存储器无法存储无限精度的值,计算机处理器也不能对无限精度的数进行处理。某些数据挖掘方法需要离散值的属性,这也催生了对数据进行离散化的需要。

数据离散化是对数据的属性值进行的预处理,它是将属性值划分为有限个部分,之后使用这个部分的标签来代替原来的属性值。

数据离散化的方法主要有分箱、聚类、自顶向下拆分、自底向上合并等。 使用分箱的数据离散化方法是通过先将属性值分箱,再将属性值替换为箱标签的离散化方法;

使用聚类的数据离散化方法是通过先将属性值聚类,再使用类标签作为新的属性值的离散化方法。

通过拆分和合并来进行数据离散化的方法:基于信息增益的离散化、基于卡方检验的离散化和基于自然分区的离散化。

本文链接地址:https://www.jiuchutong.com/zhishi/299358.html 转载请保留说明!

上一篇:Mac系统下Flutter安装教程(mac配置flutter环境变量)

下一篇:如何在Vue3+Vite中使用JSX(vue3 技巧)

  • 法定免税项目包括
  • 中级考试报了三门,只考两门行吗
  • 处置资产开啥发票
  • 车辆购置税计入成本吗
  • 外贸企业出口销售通常采用
  • 出版产品
  • 暂估费用发票没到会计分录怎么写?
  • 公司缴纳个人所得税会计分录
  • 代垫电费给对方怎么开票
  • 购车 买车
  • 报销凭证找不到了怎么办
  • 全年一次性奖金税收优惠政策
  • 小规模纳税人每月15万免税
  • 新成立的分公司怎么样
  • 单位没车能用停车票不能用加油票吗?
  • 一般纳税人企业要交哪些税
  • 关于环保税的计税依据
  • 个人开机械租赁发票需要什么
  • 会计七月份忙吗
  • 股权转让为什么不征收增值税
  • 处理固定资产开什么发票
  • 无形资产的出租租金通过什么科目核算
  • 进项税未抵扣会计分录
  • 冲销暂估入库的会计分录
  • 实收资本和资产的关系
  • 多交的增值税怎么申报
  • php留言板的简单编写
  • vue前端代码实例
  • pos机未入账怎么回事
  • win7纯净版系统安装教程
  • 禁止扣除项目有什么
  • 消费税的会计分录怎么写
  • 超分模型
  • 小刺猬 (© lorenzo104/Getty Images)
  • php设计模式六大原则
  • 安装人员食宿费谁承担
  • 所有非批扣和所有批扣是什么意思
  • 水利建设基金按季度缴纳
  • 阿里pv
  • 会计审核费用报销单的职责
  • 外贸企业出口退税申报流程
  • 个人所得税换了电脑后,重新录入,离职的人也要录入吗
  • 固定资产售后回租融资租赁利息可以抵扣进项税额么
  • 债转股需要哪些资料
  • mysql自连接查询各个部门经理的工资
  • 微信支付算库存商品吗
  • 餐饮个体户如何申请开票
  • 计提递延所得税资产影响当期利润吗
  • 运费发票抵扣要求
  • 公司 股东 变更
  • 固定资产全套账务处理2021
  • 老板从公司借款怎么处理
  • 车船使用税应该怎么交
  • 跨月凭证出错如何调整
  • 员工伤残补助会计分录
  • 营改增后建筑业税率
  • mysql使用教程
  • task host windows解决
  • window7 aero
  • linux中的awk命令详解
  • win8系统怎么取消屏保
  • centos7.7安装
  • mac如何设置wifi热点
  • linux sed -s
  • win8.1技巧
  • win7自带桌面时钟吗
  • sendmail邮件服务器的配置
  • win7系统更新显卡驱动后黑屏无法启动
  • 2014 ChinaJoy落下帷幕 十大年度热门事件盘点
  • vue动态引入模块
  • shell监控进程
  • vue2.0与bootstrap3实现列表分页效果
  • 猫的游戏视频
  • 英特尔在哪打开
  • python基本介绍
  • 02112366电子税务局
  • 国税局宁夏税务
  • 国家税务江苏税务总局官网
  • 鄞江在哪里
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设