位置: IT常识 - 正文

网络模型的参数量和FLOPs的计算 Pytorch(网络模型参数方法)

编辑:rootadmin
网络模型的参数量和FLOPs的计算 Pytorch

目录

1、torchstat 

2、thop

3、fvcore 

4、flops_counter

5、自定义统计函数


推荐整理分享网络模型的参数量和FLOPs的计算 Pytorch(网络模型参数方法),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:网络模型的参数量是一层不变的吗,网络模型的参数设置,网络模型的参数是什么,网络模型参数量如何计算,网络模型的参数量,网络模型的参数是什么,网络模型的参数量是一层不变的吗,网络模型的参数有哪些,内容如对您有帮助,希望把文章链接给更多的朋友!

FLOPS和FLOPs的区别:

FLOPS:注意全大写,是floating point operations per second的缩写,意指每秒浮点运算次数,理解为计算速度。是一个衡量硬件性能的指标。FLOPs:注意s小写,是floating point operations的缩写(s表复数),意指浮点运算数,理解为计算量。可以用来衡量算法/模型的复杂度。

在介绍torchstat包和thop包之前,先总结一下:

torchstat包可以统计卷积神经网络和全连接神经网络的参数和计算量。thop包可以统计统计卷积神经网络、全连接神经网络以及循环神经网络的参数和计算量,程序示例等详见下文。1、torchstat pip install torchstat -i https://pypi.tuna.tsinghua.edu.cn/simple

在实际操作中,我们可以调用torchstat包,帮助我们统计模型的parameters和FLOPs。如果不修改这个包里面的一些代码,那么这个包只适用于输入为3通道的图像的模型。

import torchimport torch.nn as nnfrom torchstat import statclass Simple(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 16, 3, 1, padding=1, bias=False) self.conv2 = nn.Conv2d(16, 32, 3, 1, padding=1, bias=False) def forward(self, x): x = self.conv1(x) x = self.conv2(x) return xmodel = Simple()stat(model, (3, 244, 244)) # 统计模型的参数量和FLOPs,(3,244,244)是输入图像的size

 如果把torchstat包中的一行程序进行一点点改动,那么这个包可以用来统计全连接神经网络的参数量和计算量。当然手动计算全连接神经网络的参数量和计算量也很快 =_= 。进入torchstat源代码之后,如下图所示,注释掉圈红的地方,就可以用torchstat包统计全连接神经网络的参数量和计算量了。

网络模型的参数量和FLOPs的计算 Pytorch(网络模型参数方法)

2、thoppip install thop -i https://pypi.tuna.tsinghua.edu.cn/simpleimport torchimport torch.nn as nnfrom thop import profileclass Simple(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(10, 10) def forward(self, x): x = self.fc1(x) return xnet = Simple()input = torch.randn(1, 10) # batchsize=1, 输入向量长度为10macs, params = profile(net, inputs=(input, ))print(' FLOPs: ', macs*2) # 一般来讲,FLOPs是macs的两倍print('params: ', params)3、fvcore pip install fvcore -i https://pypi.tuna.tsinghua.edu.cn/simple

用它比较好

import torchfrom torchvision.models import resnet50from fvcore.nn import FlopCountAnalysis, parameter_count_table# 创建resnet50网络model = resnet50(num_classes=1000)# 创建输入网络的tensortensor = (torch.rand(1, 3, 224, 224),)# 分析FLOPsflops = FlopCountAnalysis(model, tensor)print("FLOPs: ", flops.total())# 分析parametersprint(parameter_count_table(model))

 终端输出结果如下,FLOPs为4089184256,模型参数数量约为25.6M(这里的参数数量和我自己计算的有些出入,主要是在BN模块中,这里只计算了beta和gamma两个训练参数,没有统计moving_mean和moving_var两个参数),具体可以看下我在官方提的issue。 通过终端打印的信息我们可以发现在计算FLOPs时并没有包含BN层,池化层还有普通的add操作(我发现计算FLOPs时并没有统一的规定,在github上看的计算FLOPs项目基本每个都不同,但计算出来的结果大同小异)。

注意:在使用fvcore模块计算模型的flops时,遇到了问题,记录一下解决方案。首先是在jit_analysis.py的589行出错。经过调试发现,op_counts.values()的类型是int32,但是计算要求的类型只能是int、float、np.float64和np.int64,因此需要手动进行强制转换。修改如下:

4、flops_counterpip install ptflops -i https://pypi.tuna.tsinghua.edu.cn/simple

用它也很好,结果和fvcore一样

from ptflops import get_model_complexity_infomacs, params = get_model_complexity_info(model, (112, 9, 9), as_strings=True, print_per_layer_stat=True, verbose=True)print('{:<30} {:<8}'.format('Computational complexity: ', macs))print('{:<30} {:<8}'.format('Number of parameters: ', params))

5、自定义统计函数import torchimport numpy as npdef calc_flops(model, input): def conv_hook(self, input, output): batch_size, input_channels, input_height, input_width = input[0].size() output_channels, output_height, output_width = output[0].size() kernel_ops = self.kernel_size[0] * self.kernel_size[1] * (self.in_channels / self.groups) * ( 2 if multiply_adds else 1) bias_ops = 1 if self.bias is not None else 0 params = output_channels * (kernel_ops + bias_ops) flops = batch_size * params * output_height * output_width list_conv.append(flops) def linear_hook(self, input, output): batch_size = input[0].size(0) if input[0].dim() == 2 else 1 num_steps = input[0].size(0) weight_ops = self.weight.nelement() * (2 if multiply_adds else 1) bias_ops = self.bias.nelement() if self.bias is not None else 0 flops = batch_size * (weight_ops + bias_ops) flops *= num_steps list_linear.append(flops) def fsmn_hook(self, input, output): batch_size = input[0].size(0) if input[0].dim() == 2 else 1 weight_ops = self.filter.nelement() * (2 if multiply_adds else 1) num_steps = input[0].size(0) flops = num_steps * weight_ops flops *= batch_size list_fsmn.append(flops) def gru_cell(input_size, hidden_size, bias=True): total_ops = 0 # r = \sigma(W_{ir} x + b_{ir} + W_{hr} h + b_{hr}) \\ # z = \sigma(W_{iz} x + b_{iz} + W_{hz} h + b_{hz}) \\ state_ops = (hidden_size + input_size) * hidden_size + hidden_size if bias: state_ops += hidden_size * 2 total_ops += state_ops * 2 # n = \tanh(W_{in} x + b_{in} + r * (W_{hn} h + b_{hn})) \\ total_ops += (hidden_size + input_size) * hidden_size + hidden_size if bias: total_ops += hidden_size * 2 # r hadamard : r * (~) total_ops += hidden_size # h' = (1 - z) * n + z * h # hadamard hadamard add total_ops += hidden_size * 3 return total_ops def gru_hook(self, input, output): batch_size = input[0].size(0) if input[0].dim() == 2 else 1 if self.batch_first: batch_size = input[0].size(0) num_steps = input[0].size(1) else: batch_size = input[0].size(1) num_steps = input[0].size(0) total_ops = 0 bias = self.bias input_size = self.input_size hidden_size = self.hidden_size num_layers = self.num_layers total_ops = 0 total_ops += gru_cell(input_size, hidden_size, bias) for i in range(num_layers - 1): total_ops += gru_cell(hidden_size, hidden_size, bias) total_ops *= batch_size total_ops *= num_steps list_lstm.append(total_ops) def lstm_cell(input_size, hidden_size, bias): total_ops = 0 state_ops = (input_size + hidden_size) * hidden_size + hidden_size if bias: state_ops += hidden_size * 2 total_ops += state_ops * 4 total_ops += hidden_size * 3 total_ops += hidden_size return total_ops def lstm_hook(self, input, output): batch_size = input[0].size(0) if input[0].dim() == 2 else 1 if self.batch_first: batch_size = input[0].size(0) num_steps = input[0].size(1) else: batch_size = input[0].size(1) num_steps = input[0].size(0) total_ops = 0 bias = self.bias input_size = self.input_size hidden_size = self.hidden_size num_layers = self.num_layers total_ops = 0 total_ops += lstm_cell(input_size, hidden_size, bias) for i in range(num_layers - 1): total_ops += lstm_cell(hidden_size, hidden_size, bias) total_ops *= batch_size total_ops *= num_steps list_lstm.append(total_ops) def bn_hook(self, input, output): list_bn.append(input[0].nelement()) def relu_hook(self, input, output): list_relu.append(input[0].nelement()) def pooling_hook(self, input, output): batch_size, input_channels, input_height, input_width = input[0].size() output_channels, output_height, output_width = output[0].size() kernel_ops = self.kernel_size * self.kernel_size bias_ops = 0 params = output_channels * (kernel_ops + bias_ops) flops = batch_size * params * output_height * output_width list_pooling.append(flops) def foo(net): childrens = list(net.children()) if not childrens: print(net) if isinstance(net, torch.nn.Conv2d) or isinstance(net, torch.nn.ConvTranspose2d): net.register_forward_hook(conv_hook) # print('conv_hook_ready') if isinstance(net, torch.nn.Linear): net.register_forward_hook(linear_hook) # print('linear_hook_ready') if isinstance(net, torch.nn.BatchNorm2d): net.register_forward_hook(bn_hook) # print('batch_norm_hook_ready') if isinstance(net, torch.nn.ReLU) or isinstance(net, torch.nn.PReLU): net.register_forward_hook(relu_hook) # print('relu_hook_ready') if isinstance(net, torch.nn.MaxPool2d) or isinstance(net, torch.nn.AvgPool2d): net.register_forward_hook(pooling_hook) # print('pooling_hook_ready') if isinstance(net, torch.nn.LSTM): net.register_forward_hook(lstm_hook) # print('lstm_hook_ready') if isinstance(net, torch.nn.GRU): net.register_forward_hook(gru_hook) # if isinstance(net, FSMNZQ): # net.register_forward_hook(fsmn_hook) # print('fsmn_hook_ready') return for c in childrens: foo(c) multiply_adds = False list_conv, list_bn, list_relu, list_linear, list_pooling, list_lstm, list_fsmn = [], [], [], [], [], [], [] foo(model) _ = model(input) total_flops = (sum(list_conv) + sum(list_linear) + sum(list_bn) + sum(list_relu) + sum(list_pooling) + sum( list_lstm) + sum(list_fsmn)) fsmn_flops = (sum(list_fsmn) + sum(list_linear)) lstm_flops = sum(list_lstm) model_parameters = filter(lambda p: p.requires_grad, model.parameters()) params = sum([np.prod(p.size()) for p in model_parameters]) print('The network has {} params.'.format(params)) print(total_flops, fsmn_flops, lstm_flops) print(' + Number of FLOPs: %.2f M' % (total_flops / 1000 ** 2)) return total_flopsif __name__ == '__main__': from torchvision.models import resnet18 model = resnet18(num_classes=1000) imput_size = torch.rand((1,3,224,224)) calc_flops(model, imput_size)

本文链接地址:https://www.jiuchutong.com/zhishi/299382.html 转载请保留说明!

上一篇:c++STL急急急(c++stl详解)

下一篇:40个web前端实战项目,练完即可就业,从入门到进阶,基础到框架,html_css【附视频+源码】(web前端视频教程全套)

  • 生产企业出口货物劳务免抵退税申报明细表
  • 增值税应纳税额是什么意思
  • 土增清算问题
  • 中级会计报名必须用ie浏览器吗
  • 计提生产车间工人和车间管理人员工资
  • 投资收益属于什么账户
  • 联合体项目工程款如何拨付
  • 每个月结转损益都有什么科目
  • 出库单上面的单位写谁的
  • 土地转让如何缴纳增值税
  • 企业购入投资性房地产
  • 大额承兑换小额承兑会计分录
  • 河道工程维护管理费征收
  • 事业单位为职工代扣代缴个人所得税
  • 淘汰生产母猪处理销售收入的分录怎么处理?
  • 购入货物自用的进项税额转出分录怎么处理
  • 在不同单位拿的工资怎么计税?
  • 企业盈利后又亏损怎么算
  • 一个季度申报一次是什么
  • 地税三方协议是什么意思
  • 发票已认证部分怎么撤销
  • 企业在年度中间终止经营活动的,应当
  • 公司注销了帐户钱能办款
  • 加计扣除10%进项税政策文件
  • 免抵退税申报表主表
  • 收到发票对方已红冲是否退回?
  • 股权转让要交哪些费用
  • windows10如何设置锁屏时间
  • 苹果14.5新功能
  • win11默认用户名
  • win10蓝屏怎么弄
  • 修改远程桌面端口脚本
  • 股权转让协议合同
  • 工程预付款抵扣是什么意思
  • thinkphp实现163、QQ邮箱收发邮件的方法
  • 高薪技术企业研发项目合同范本最新
  • php变量用什么符号
  • 公司购监控设备入什么科目
  • 无形资产计价原则正确的是
  • 记账凭证的总账科目是什么
  • php访问数据库的方式
  • yolov5 libtorch
  • 数据挖掘的四种基本方法
  • point network
  • resize2fs命令 同步文件系统容量到内核
  • php魔术方法功能与用法实例分析
  • 个体工商户注册资本是多少
  • 日常费用报销表格
  • 材料暂估入库的依据有哪些
  • 其他权益工具投资公允价值变动怎么计算
  • 对外捐赠非货币性资产的会计处理
  • 企业盈余公积的主要用途是
  • 增值税普通发票查询
  • SQL Server 2005 镜像构建手册(sql2005数据库同步镜像方案)
  • mysql 管理员登录
  • 调整后财务报表
  • 有关预收款的说法
  • sql server数据库设置定时任务
  • mysql insert语句操作实例讲解
  • 国家税务总局就是国税局吗?
  • 银行存款属于其他收益吗
  • 收到退留抵税额会计分录
  • 承兑汇票贴现利息会计分录
  • 暂估成本比实际高分录
  • 什么是利润表?其作用有哪些?
  • 探望公司员工现金费用报销怎么写
  • 金蝶暂存凭证怎样转正常凭证
  • 浅谈基于comsol的锂离子电池仿真
  • 此数据库中不存在用户或角色
  • sql中函数 判断是否是null
  • centos7修改mtu
  • win8 联网
  • windows电源图标消失
  • 在solaris8下
  • 无缝广告植入
  • 不要使用CSS Expression的原因分析
  • nodejs使用es6
  • [置顶]游戏名:chivalry2
  • 怎么查询12345的验证码
  • 税法难吗
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设