位置: IT常识 - 正文

机器学习:基于朴素贝叶斯对花瓣花萼的宽度和长度分类预测

编辑:rootadmin
机器学习:基于朴素贝叶斯对花瓣花萼的宽度和长度分类预测 机器学习:基于朴素贝叶斯对花瓣花萼的宽度和长度分类预测

推荐整理分享机器学习:基于朴素贝叶斯对花瓣花萼的宽度和长度分类预测,希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!

作者:AOAIYI

作者简介:Python领域新星作者、多项比赛获奖者:AOAIYI首页

😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍

📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪

专栏案例:机器学习机器学习:基于逻辑回归对某银行客户违约预测分析机器学习:学习k-近邻(KNN)模型建立、使用和评价机器学习:基于支持向量机(SVM)进行人脸识别预测决策树算法分析天气、周末和促销活动对销量的影响机器学习:线性回归分析女性身高与体重之间的关系机器学习:基于主成分分析(PCA)对数据降维文章目录机器学习:基于朴素贝叶斯对花瓣花萼的宽度和长度分类预测一、实验目的二、实验原理1.分类问题描述2.Bayes’ theorem(贝叶斯法则)3.朴素贝叶斯分类算法三、实验环境四、实验内容五、实验步骤1.朴素贝叶斯2.业务理解3.读取数据4.数据理解5.数据准备6.构建数据训练集和测试集7.构建三类模型总结一、实验目的

1.理解朴素贝叶斯的原理

2.掌握scikit-learn贝叶斯的用法

3.认识可视化工具seaborn

二、实验原理1.分类问题描述

贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法,对于分类问题,其实谁都不会陌生,日常生活中我们每天都进行着分类过程。例如,当你看到一个人,你的脑子下意识判断他是学生还是社会上的人;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱”之类的话,其实这就是一种分类操作,贝叶斯分类算法,那么分类的数学描述又是什么呢? 其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合(特征集合),其中每一个元素是一个待分类项,f叫做分类器。分类算法的内容是要求给定特征,构造分类器f,让我们得出类别。

2.Bayes’ theorem(贝叶斯法则)

在概率论和统计学中,Bayes theorem(贝叶斯法则)根据事件的先验知识描述事件的概率。贝叶斯法则表达式如下所示:

P(A|B) – 在事件B下事件A发生的条件概率

P(B|A) – 在事件A下事件B发生的条件概率

P(A), P(B) – 独立事件A和独立事件B的边缘概率

朴素贝叶斯方法是一组监督学习算法,它基于贝叶斯定理应用每对特征之间的“天真”独立假设。给定类变量y和从属特征矢量X1通过Xn,贝叶斯定理状态下列关系式:

使用天真的独立假设

对所有人来说i,这种关系简化为

由于

输入是常数,我们可以使用以下分类规则:

我们可以使用最大后验(MAP)估计来估计的

前者是y 训练集中类的相对频率。不同的朴素贝叶斯分类器主要区别于他们对分布的假设

3.朴素贝叶斯分类算法

在scikit-learn中,提供了3种朴素贝叶斯分类算法:GaussianNB(高斯朴素贝叶斯)、MultinomialNB(多项式朴素贝叶斯)、BernoulliNB(伯努利朴素贝叶斯)

可以参考文档:

http://scikit-learn.org/stable/modules/naive_bayes.html

http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html

三、实验环境

利用scikit-learn提供的三种朴素贝叶斯算法,构建分类器,根据花瓣花萼的宽度和长度判断他们属于哪一类

四、实验内容

Python 3.9

Jupyter notebook

五、实验步骤1.朴素贝叶斯

贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法

2.业务理解

先有一张表格,描述了花瓣的特征和种类,利用scikit-learn提供的三种朴素贝叶斯算法,构建分类器,根据花瓣花萼的宽度和长度预测他们属于哪一个品种

3.读取数据

1.编写代码,读取数据

#导入pandas库和numpy库 import pandas as pd import numpy as np iris = pd.read_csv(r'D:\CSDN\数据分析\naivebayes\iris.csv') iris.head()

4.数据理解

1.查看数据结构

iris.shape机器学习:基于朴素贝叶斯对花瓣花萼的宽度和长度分类预测

说明:该数据总共有150行,5列

2.查看数据列名称

iris.columns

5.数据准备

1.删除“种类”这列数据得到特征数据如下:

X_iris = iris.drop(['species'],axis=1)X_iris.head()

2.获取“species”这列数据并将其转换为数组,得到预测数据

y_iris = np.ravel(iris[['species']])y_iris

3.查看y_iris总共有多少行

y_iris.shape

6.构建数据训练集和测试集

1.构建训练和测试数据集

#导入相应的库 from sklearn.model_selection import train_test_split #将数据分为训练集,测试集 X_train,X_test,y_train,y_test = train_test_split(X_iris,y_iris,random_state=1) #获取数据前5行 X_train.head()

说明:将数据分为训练集和测试集,默认情况下,75%的数据用于训练,25%的数据用于测试

训练集是用于发现和预测潜在关系的一组数据。测试集是用于评估预测关系强度和效率的一组数据。

2.查看训练集和测试集的数据结构

print(X_train.shape)print(X_test.shape) print(y_train.shape) print(y_test.shape)

说明:训练集:X_iris数据为(150,4),X_train为(112,4),X_test为(38,4) sales数据为200行,y_train为(112,),y_test为(38,)

3.查看y_train数据

y_train

7.构建三类模型

在scikit-learn中,提供了3种朴素贝叶斯分类算法:GaussianNB(高斯朴素贝叶斯)、MultinomialNB(多项式朴素贝叶斯)、BernoulliNB(伯努利朴素贝叶斯)

GaussianNB实现高斯朴素贝叶斯算法进行分类。假设特征的可能性是高斯的:

1.利用GaussianNB(高斯朴素贝叶斯)类建立简单模型并预测

from sklearn.naive_bayes import GaussianNB#利用GaussianNB类建立简单模型 gb= GaussianNB() model_GaussinaNB = gb.fit(X_train,y_train) #predict(X):直接输出测试集预测的类标记,X_test为测试集 y_predict_GaussianNB= model_GaussinaNB.predict(X_test) print("y_predict_GaussianNB",y_predict_GaussianNB)

构建一个新的测试数组

import pandas as pdz_data ={'sepal_length':['5'],'sepal_width':['3'],'petal_length':['3'],'petal_width':['1.8']} Z_data =pd.DataFrame(z_data,columns=['sepal_length','sepal_width','petal_length','petal_width']) print(Z_data)

将测试数据带入模型预测得到预测结果

Z_model_predict=model_GaussinaNB.predict(Z_data)print('Z_model_predict',Z_model_predict)

说明:当我们提供的数据为’sepal_length’:[‘5’],‘sepal_width’:[‘3’],‘petal_length’:[‘3’],‘petal_width’:[‘1.8’]时,预测它属于‘versicolor’这个种类,到底预测正确与否呢?接下来看一下预测结果的平均值

查看预测结果的平均值

#预测结果 y_predict_GaussianNB==y_test

mean()函数功能:求取均值

y_test_mean=np.mean(y_predict_GaussianNB==y_test)print('y_test_GaussianNB_mean',y_test_mean)

查看预测正确率

score(X, y[, sample_weight]) 返回给定测试数据和标签的平均精度

gb.score(X_train,y_train)

2.BernoulliNB(伯努利朴素贝叶斯) BernoulliNB实现了根据多元伯努利分布的数据的朴素贝叶斯训练和分类算法; 即,可能存在多个特征,但每个特征被假定为二进制值(伯努利,布尔)变量。因此,该类要求将样本表示为二进制值特征向量;如果传递任何其他类型的数据,BernoulliNB实例可以将其输入二值化(取决于binarize参数)。

伯努利朴素贝叶斯的决策规则是基于

利用BernoulliNB类建立简单模型并预测

# ====================BernoulliNB from sklearn.naive_bayes import BernoulliNB model_BernoulliNB=BernoulliNB().fit(X_train,y_train) y_predict_BernoulliNB=model_BernoulliNB.predict(X_test) print('y_test_BernoulliNB_mean',np.mean(y_predict_BernoulliNB==y_test))

3.MultinomialNB(多项式朴素贝叶斯) MultinomialNB实现用于多项分布数据的朴素贝叶斯算法,并且是用于文本分类的两种经典朴素贝叶斯变体之一(其中数据通常表示为单词向量计数,尽管tf-idf向量也已知在实践中很好地工作) 。

利用MultinomialNB类建立简单模型并预测

# ====================MultinomialNB from sklearn.naive_bayes import MultinomialNB model_MultinomialNB=MultinomialNB().fit(X_train,y_train) y_predict_MultinomialNB=model_MultinomialNB.predict(X_test) print('y_test_MultinomialNBB_mean',np.mean(y_predict_MultinomialNB==y_test))

总结

贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法,对于分类问题,其实谁都不会陌生,日常生活中我们每天都进行着分类过程。例如,当你看到一个人,你的脑子下意识判断他是学生还是社会上的人;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱”之类的话,其实这就是一种分类操作。

每个人都会遇到困难跟挫折,要有同困难作斗争的决心跟勇气。困难跟挫折是成就事业的基石,岸在远方向我们招手,只要越过它,敢于在惊涛骇浪中博击,我们就会尝到胜利的果食。

本文链接地址:https://www.jiuchutong.com/zhishi/299553.html 转载请保留说明!

上一篇:Http协议之Content-Type理解

下一篇:STM32CubeIDE开发(三十一), stm32人工智能开发应用实践(Cube.AI).篇一(stm32cubeIDE开发串口 修改速率)

  • 附加税申报表里怎么填写
  • 未实际处置资产损失税前扣除金额的分录?
  • 城建税是什么税率
  • 工厂外包加工项目
  • 上年结转未抵扣
  • 小规模季报财报申报错误怎么办
  • 事业单位财政直接支付账务处理
  • 转让土地使用权一般计税方法
  • 农产品收购发票开错了
  • 增值税和实际缴税不符
  • 物业公司收到一年物业费开具发票后如何确认收入
  • 增值税税控系统的税务处理
  • 水利行政事业性收费收入会计分录
  • 滴滴客运服务费发票税率
  • 2020年外资企业
  • 农产品收购发票上的买价含税吗
  • 最新土地增值税筹划
  • 旅游业相关行业
  • 个人所得税福利费免税范围
  • 汽车销售服务费话术
  • 跨年度的费用发票做错了怎么办
  • 期望和方差的计算例题
  • 2019附加税优惠政策
  • 餐饮充值赠送
  • 华为鸿蒙一键抠图
  • 房地产预缴所得税的计税基础
  • 增值税电子发票有什么用
  • 认定科技型中小企业简单吗
  • Laravel Intervention/image图片处理扩展包的安装、使用与可能遇到的坑详解
  • sccenter.exe - sccenter是什么进程 有什么用
  • 右键菜单里的快捷键
  • 广告公司收到广告费发票如何入账
  • 应付债券借贷
  • php rewrite
  • 其他业务支出的二级科目有哪些
  • 进出口企业税务怎可以查出问题
  • 进项税额转出的所有会计分录
  • anaconda下的python
  • 你让他心动他让你心安
  • 2023前端面试题目
  • php打包phar
  • “php”
  • 应收账款提了坏账后收回
  • 往来款的账务处理
  • 跨年的增值税专票怎么开
  • 三栏式明细账需要每笔结余额吗
  • db2教程
  • linux服务器架设指南
  • 自然人代开经营所得汇算清缴怎么做
  • 银行贷款第三方是什么意思
  • 水利基金申报表在哪找
  • mysql设置uuid
  • 试生产期间的收入如何做账
  • 农产品怎么自产自销
  • 百分百控股代表着什么
  • 预付账款的账务处理视频教程
  • 技术服务发票怎么做成本
  • 公司转账给其他公司账户
  • 会计利润的计算公式是
  • 建造固定资产的账务处理(出包方式)
  • solaris 安装
  • windows xp运行
  • 打开优酷视频播放
  • win10系统无法打开这个应用
  • win7系统桌面图标有遮挡
  • opengl es 3.2
  • bootstrap下拉框设置默认值
  • jquery ajaxfileupload异步上传插件
  • material design admin
  • 数据结构分析时间复杂度
  • jqury选择器
  • Unity3D游戏开发(第2版)
  • jquery有哪些
  • 企业欠税补交后影响贷款吗
  • 已办理了退休,档案还需要保存吗
  • 农产品核定管理办法最新
  • 国家税务总局关于税务机构改革有关事项的公告
  • 广西纳税申报流程
  • 税收收入弹性值
  • 税务局工会
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设