位置: IT常识 - 正文

YOLOv5图像分割中的NMS处理(yolov3图像识别)

编辑:rootadmin
YOLOv5图像分割中的NMS处理

推荐整理分享YOLOv5图像分割中的NMS处理(yolov3图像识别),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:yolo 图像分割,yolov5语义分割,yolov5 图像大小,yolov5 图像大小,yolov4图像分割,yolov3图像分割,yolov4图像分割,yolo 图像分割,内容如对您有帮助,希望把文章链接给更多的朋友!

在上一篇文章YOLOv5图像分割--SegmentationModel类代码详解有讲到图像经过YOLOv5网络后得到的输出形式,主要是调用了BaseModel类下的forward得到的输出,输出的shape为【batch,25200,117】,这里的25200相当于总的anchors数量【以640*640的输入为例,共有anchors=80*80*3+40*40*3+20*20*3】,117为5[x,y,w,h,conf]+80个类+32【mask的数量】。

那么得到上面这张图的输出后又需要哪些处理呢?又是怎么处理的呢?本篇文章就是来刨析这个问题。

可以从下面的代码看到在进行model后会得到pred和proto。前者就是上面得到图的形式,后者的shape为【batch,32,160,160】,这里的32是mask的数量,160*160是针对80*80这个特征层的上采样得到的。然后是送入NMS进行处理得到新的pred输出。

pred, proto = model(im, augment=augment, visualize=visualize)[:2] # im[batch, 3, 640, 640] # pred:[batch,25200,117], proto:[batch,32,160,160] # NMS with dt[2]: pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det, nm=32)

目录

NMS中发生了什么?

通过conf_thres进行筛选

xywh2xyxy

取得对应anchor中conf最大的类

NMS处理 


NMS中发生了什么?

那么来看一下NMS中发生了什么 

 可以看到代码中传入的参数为:pred:model的输出,conf_thres:置信度阈值,iou_thres:iou阈值,classes:需要过滤的类,nm为mask的数量。

然后进入内部,prediction的shepe为【batch,25200,117】,因此通过下面的代码得到:

bs:batch size 这里得到是1

nc:117-32-5=80【coco类的数量】

xc:由于prediction在117这个维度的第5维度【这里的4维度】是指conf,所以可以通过conf_thres得到大于阈值的目标mask  xc,那么此时xc的shape为【1,25200】。通过这个步骤就可以将所有anchors中大于conf的目标筛选出来【形式为False or True】。

通过conf_thres进行筛选 bs = prediction.shape[0] # batch size nc = prediction.shape[2] - nm - 5 # number of classes 85-5 xc = prediction[..., 4] > conf_thres # candidates 85=5+80=(x,y,w,h,conf) 第4维度为conf

然后新建一个output全零的张量,最后一个通道的shape为6+32=38。6指的【x1,y1,x2,y1,conf,class】。 

output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bsYOLOv5图像分割中的NMS处理(yolov3图像识别)

下面的xi是图像的index,对应该index的图像。

x = x[xc[xi]]:由于prediction当前batch为1 ,所以对应xi此时为0,xc是上面通过conf_thres得到shape为【1,25200】的mask,所以xc[xi]就是取出该batch中所有的anchors【这些anchors内已经内是经过conf筛选的目标】;x的shape为【25200,117】[忘记这个shape的含义可以看我最前面的图],那么x[xc[ix]]就可以表示为通过xc中的25200个含有False or True 的anchors,筛选出conf大于阈值的目标【这个目标维度为117,含有box信息,conf,80个类,32个mask】

在我这里得到新的x的shape为:【52,117】。这就表示了在25200个anchors中有52个anchors内有目标,每个anchor又有117个维度来记录该anchor内目标的boxes信息,conf以及类信息等。

for xi, x in enumerate(prediction): # image index, image inference # Apply constraints # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height x = x[xc[xi]] # confidence xc是所有anchor内的置信度,shape[1,25200]。表示为:获取当前图像中所有anchor中有预测结果的[这个是通过conf筛选过的]

 下面的这一行代码表示为计算conf,x[:,5:]

# Compute conf x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_confxywh2xyxy

下面的代码中box是将上面x中的box信息由center_x,center_y,wh转为x1,y1,x2,y2的形式【为后面计算iou做准备】,这里的mi=85【表示mask start index】,因为此时的xshape为【52,117=5+85+32】所以从85开始提取所有的mask。 

# Box/Mask box = xywh2xyxy(x[:, :4]) # center_x, center_y, width, height) to (x1, y1, x2, y2) mask = x[:, mi:] # zero columns if no masks取得对应anchor中conf最大的类

在下面的代码中x[:,5:mi]=x[:,5:85]表示为取所有anchors中所有类的conf。【0~4是box,5:85是class】,然后取出所有anchors中预测的类中conf最大的conf以及索引j【x[:,5:85]的shape为[52,80],利用max(1,keepdim=True)在80所在的这个维度上取max】,而这里得到最大index j就是每个anchors预测得到的类的index[这样不就知道预测的种类了嘛]。

可视化看一下,这里只展示一部分。前面的一个列是所有anchor得到的最大conf值,后面的一列是对应的类别,比如第行中0.24885表示当前这个anchor预测为类别0【也就是persion类,置信度为0.24885】:

最后再用cat函数进行拼接,即将box【xyxy】,conf[所有anchor得到最大的conf], j[最大conf对应的类,mask]

conf, j = x[:, 5:mi].max(1, keepdim=True) x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]

 得到新的x如下图:

下面这行代码是对上面得到x在conf这个维度上进行排序 

x = x[x[:, 4].argsort(descending=True)] # sort by confidenceNMS处理 

agnostic参数 True表示多个类一起计算nms,False表示按照不同的类分别进行计算nms。

这里的nms是调用的torchvision下的nms。需要传入boxes,这里的boxes是加了c的偏移量【为什么加这个偏移量这里我没明白,有知道的可以留言说一下】。这里的boxes为【x1,y1,x2,y2】形式。score是已经排序好的,iou_thres是iou阈值。

# Batched NMS c = x[:, 5:6] * (0 if agnostic else max_wh) # classes boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS

此时得到的i为:tensor([ 0,  2,  6, 16, 30], device='cuda:0')

这里的x是shape为【49,38】,49表示为有目标的49个anchors,38就是前面含有boxes,conf,index,mask的信息。i就是筛选得到的anchors索引。索引得到最终5个anchors以及信息,shape为【5,38】.

output[xi] = x[i]

这个就是我们得到的经过NMS后的输出啦 

本文链接地址:https://www.jiuchutong.com/zhishi/299590.html 转载请保留说明!

上一篇:轻量级网络MobileNeXt--改进MobileNet v2的逆残差结构(轻量级网络设计)

下一篇:vue3中使用ref语法糖(vue的ref怎么用)

  • 开具增值税发票未报送是什么意思?
  • 转租仓库交增值税吗
  • 行政单位调拨的固定资产申请报告
  • 普通发票作废要本人去拿吗
  • 企业季度报什么税
  • 发放代扣代缴个人所得税分录
  • 购买方已抵扣开具红字信息表之后做账需要什么原始凭证
  • 增值税即征即退收入要交企业所得税吗
  • 可转换可赎回债券
  • 小规模纳税人购车是怎么抵税的
  • 承兑差额怎么做账
  • 买车押金合同要注意什么手续
  • 医院哪些收入需要交企业所得税
  • 申请最高开票限额不超过10万元的无需事前实地查验
  • 递延所得税资产和负债怎么理解
  • 已申报税额什么时候缴纳
  • 简易征收销项税额咋做账
  • 固定资产计提折旧的会计科目
  • 金税盘减免税款贷方余额
  • 经营性租入的固定资产需要计提折旧吗
  • 净资产属于政府预算会计要素吗
  • 企业贷款利息是否可以提前还款
  • 商品超出几倍合法
  • 收的的挂靠费一般是几个点
  • 增值税完税凭证怎么做账
  • 应收账款质押账户被冻结
  • 库存商品淘汰报告模板
  • 交易性金融资产公允价值变动计入
  • 哪些业务可以进入共享服务中心
  • gsicon.exe是什么进程 作用是什么 gsicon进程查询
  • 大陆公司如何开离岸账户
  • 招标场地费计入什么科目
  • PHP:Memcached::delete()的用法_Memcached类
  • 完工产品成本怎么算
  • 广告性质的赞助支出可以在企业所得税前扣除吗
  • thinkphp invoke
  • shell脚本攻略第三版pdf
  • 怎么解锁城堡上空
  • 资产减值会计处理对利润的影响
  • webpack打包步骤
  • 常用的css样式有哪些
  • 小程序官方组件展示
  • 冲红发票操作流程
  • 哪几类账户期末余额最大
  • 会计怎样审核报销凭证
  • 汇算清缴需要做账吗
  • 免税农产品有哪些类型
  • 没有货怎么做电商
  • sql2008用户sa登录失败
  • 其他应收款借方表示增加吗
  • 行政单位怎样核销坏账
  • 搬迁补偿款的会计分录
  • 残保金计提比例
  • 应收贷方余额怎么处理
  • 协会申报材料
  • 公司奖励员工制度
  • 帮人家开税票对自己生意有影响么
  • 差旅费涉及的科目
  • 成本法长期股权投资初始成本确认
  • 代收物业费有什么风险
  • 物流运输业务
  • 无形资产管理的特点
  • 支票为什么不能取钱
  • 虚拟机linux端mysql数据库无法远程访问的解决办法
  • sql server ceiling
  • win2003出现各种硬件故障问题时的处理方法
  • linux安装atop
  • w7打穿越火线
  • seti@home.exe - seti@home是什么进程 有什么用
  • powergenie是什么程序
  • win7系统浏览器打不开网页怎么办
  • android游戏排行榜
  • js日期格式化方法
  • ug编程代码意思
  • shell脚本编程实例
  • unity 角色
  • javascript学习指南
  • androidstudio和idea
  • 汽车销售环节要做什么
  • 贵阳地铁报销凭证
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设