位置: IT常识 - 正文

DEMATEL-ISM模型的Python实现——方法介绍以及代码复现(dematel模型有什么缺点)

编辑:rootadmin
DEMATEL-ISM模型的Python实现——方法介绍以及代码复现 DEMATEL-ISM模型的Python实现——方法介绍以及代码复现前言DEMATEL-ISM分析方法方法简介步骤明确系统要素确定直接影响矩阵规范影响矩阵计算综合影响矩阵计算各个要素的影响度、被影响度、中心度和原因度绘制因果图确定整体影响矩阵确定可达矩阵划分层级绘制因素之间的递阶层次结构实例与代码DEMATEL-ISM计算原因-结果图节点度图ISM图后记前言

推荐整理分享DEMATEL-ISM模型的Python实现——方法介绍以及代码复现(dematel模型有什么缺点),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:ism模型步骤,dematel模型有什么缺点,dea-sbm模型,ism模型步骤,dea-sbm模型,m/m/s模型,dematel-ism模型的缺点,m-shel模型,内容如对您有帮助,希望把文章链接给更多的朋友!

本文源于笔者的《系统工程》课程的小组作业,笔者尝试运用DEMATEL-ISM方法来进行分析,建模求解,但在网络上并没有找到相应的,特别是集合DEMATEL-ISM方法的代码。因此自己码了DEMATEL-ISM模型的Python代码,并作为第一个博客发布~

参考文献中,笔者主要参考了李广利等1的研究,本文也将依此论文进行方法解读和代码复现。

网上查找资料的过程中,笔者发现了一个MCDA方法的python代码库2,里面有很多多准则决策分析模型的相关代码,其中就有DEMATEL的代码,笔者做了一定的参考。

DEMATEL-ISM分析方法方法简介

DEMATEL(Decision Making Trial and Evaluation Laboratory),全称为“决策试验和评价实验法”,是一种运用图论与矩阵工具进行系统要素分析的方法,通过分析系统中各要素之间的逻辑关系与直接影响关系,可以判断要素之间关系的有无及其强弱评价。ISM(Interpretative Structural Modelling)法全称为“解释结构模型”,其特点是把复杂的系统分解为若干子系统(要素),通过代数运算将系统构造成一个多级递阶的结构模型。

DEMATEL 模型可利用矩阵运算求出因素间的因果关系和影响强度,通过可视化因素间的因果关 系,得以揭示复杂问题中的关键影响因素及影响程度;但该方法无法有效识别系统中因素的层级结 构。ISM 法则通过分析构成系统的各子系统( 因素或要素) 之间的直接二元相关关系,基于布尔代数运算等,构造多级递阶有向拓扑图,但无法确定要素对系统的影响程度。

将两种方法结合,可以识别系统中关键要素及其影响程度,并构建要素的层级结构。DEMATEL-ISM方法的过程如下:

步骤明确系统要素

明确分析系统所构成的要素,将构成系统的要素标记为x1x_1x1​, x2x_2x2​, x3x_3x3​, …\ldots…, xnx_nxn​。

确定直接影响矩阵

采用专家打分法,比较xix_ixi​对xjx_jxj​的影响,由于因素与自身比较为没有影响,直接影响矩阵的对角线值为0。通过比较得到直接影响矩阵AAA。 A=[x12⋯x1nx21⋯x2n⋮⋮⋱⋮xm1xm2…]\begin{align} A= \begin{bmatrix} 0&x_{12}&\cdots&x_{1n}\\ x_{21}&0&\cdots&x_{2n}\\ \vdots &\vdots&\ddots &\vdots \\ x_{m1}&x_{m2}&\dots &0 \end{bmatrix} \end{align}A=​0x21​⋮xm1​​x12​0⋮xm2​​⋯⋯⋱…​x1n​x2n​⋮0​​​​ 式中因素xij(i=1,2,…,m;j=1,2,…,n;i≠j)x_{ij}(i=1,2, \ldots, m;j=1,2, \ldots,n;i\neq j)xij​(i=1,2,…,m;j=1,2,…,n;i=j)表示因素xix_ixi​对xjx_jxj​的直接影响。i=ji=ji=j时,xij=x_{ij}=0xij​=0。

规范影响矩阵

归一化原始关系矩阵得到规范影响矩阵。归一化方法有很多种,这里可以采用行最大值法进行归一化,即将矩阵AAA的每一行求和,在这些值中取最大值,将矩阵AAA中元素除以最大值,得到规范直接影响矩阵BBB。 B=xijmax(∑j=1nxij)\begin{align} B=\frac{x_{ij}}{max(\sum\limits_{j=1}^n x_{ij})} \end{align}B=max(j=1∑n​xij​)xij​​​​

计算综合影响矩阵

综合系统矩阵体现系统中各个元素间的影响的综合效应,规范影响矩阵不断自乘后矩阵的所有值会趋近于0,即lim⁡k→∞Bk=\lim\limits_{k \to \infty} B^k=0k→∞lim​Bk=0。计算综合影响矩阵时,得到 T=(B+B2+⋯+Bk)=∑k=1∞Bk=B(I−B)−1\begin{align} T=(B+B^2+\dots +B^k)=\sum\limits_{k=1}^\infty B^k=B(I-B)^{-1} \end{align}T=(B+B2+⋯+Bk)=k=1∑∞​Bk=B(I−B)−1​​ 式中为III单位矩阵。

计算各个要素的影响度、被影响度、中心度和原因度

影响度指矩阵TTT中各行值和,表示各行要素对其他所有要素的综合影响值,记作DiD_iDi​,有: Di=∑j=1nxij,(i=1,2,…,n)\begin{align} D_i=\sum\limits_{j=1}^n x_{ij},(i=1,2,\dots,n) \end{align}Di​=j=1∑n​xij​,(i=1,2,…,n)​​ 被影响度指矩阵TTT中各列值和,表示各列要素对其他所有要素的综合影响值,记作CiC_iCi​,有: Ci=∑j=1nxji,(i=1,2,…,n)\begin{align} C_i=\sum\limits_{j=1}^n x_{ji},(i=1,2,\dots,n) \end{align}Ci​=j=1∑n​xji​,(i=1,2,…,n)​​ 中心度表示因素在评价体系中的位置及其所起作用的大小,某要素的中心度为其影响度于被影响度之和,记作MiM_iMi​,有: Mi=Di+Ci\begin{align} M_i=D_i+C_i \end{align}Mi​=Di​+Ci​​​ 原因度由某要素的影响度和被影响度相减得到,记作,有: Ri=Di−Ci\begin{align} R_i=D_i-C_i \end{align}Ri​=Di​−Ci​​​ 当原因度大于0时,表示该要素对其他要素的影响程度大,称其为原因要素,当原因度小于0时,该要素为结果要素。

绘制因果图DEMATEL-ISM模型的Python实现——方法介绍以及代码复现(dematel模型有什么缺点)

将中心度MiM_iMi​为横坐标,将原因度RiR_iRi​作为纵坐标,绘制因果关系图。该图可以直观体现因果关系。

确定整体影响矩阵

整体影响矩阵由综合影响矩阵和单位矩阵相加得到。

确定可达矩阵

确定可达矩阵时需要引入一个阈值λ\lambdaλ以剔除因素之间影响程度较小的关系,从而明确层级结构的划分。引入阈值λ\lambdaλ对整体影响矩阵EEE进行处理,可以得到可达矩阵FFF。则有: fij={1eij≥λ(i,j=1,2,…,n)eij<λ(i,j=1,2,…,n)\begin{equation} f_{ij}= \begin{cases} 1 & & {e_{ij}\geq\lambda(i,j=1,2,\dots,n)}\\ 0 & & {e_{ij}<\lambda(i,j=1,2,\dots,n)} \end{cases} \end{equation}fij​={10​​eij​≥λ(i,j=1,2,…,n)eij​<λ(i,j=1,2,…,n)​​​

划分层级

由可达矩阵FFF的第iii行上值为1的列对应的因素求得可达集R(x1)={xi∣Fij=1}R(x_1)=\{x_i|F_{ij} =1\}R(x1​)={xi​∣Fij​=1},表示从因素xix_ixi​出发可以达到的全部因素的合集,由可达矩阵FFF的第iii列上值为1的行对应的因素求得先行集S(x1)={xi∣Fji=1}S(x_1)=\{x_i|F_{ji} =1\}S(x1​)={xi​∣Fji​=1},表示可以达到因素的全部因素的合集。如果R(x1)R(x_1)R(x1​)和S(x1)S(x_1)S(x1​)满足R(x1)∩S(x1)=R(x1)R(x_1)\cap S(x_1)=R(x_1)R(x1​)∩S(x1​)=R(x1​),则表示中对应的元素均能在中找到前因,将该元素称为高层级的元素。然后从可达矩阵中去除对应的行和列,再从矩阵中抽取最高级的因素,不断重复该过程,直到所有的行和列均被去除。

绘制因素之间的递阶层次结构

根据去除因素的顺序,绘制系统要素间多级递阶有向拓扑图。

实例与代码DEMATEL-ISM计算

这里笔者直接给出一组数据,10项因素,直接影响矩阵AAA如下。

下面是DEMETAL-ISM计算的Python代码:

#导入所需库import numpy as npimport pandas as pd#直接影响矩阵AA = np.array([[0, 2, 0, 2, 3, 2, 3, 2, 3, 2], [0, 0, 0, 1, 3, 2, 0, 1, 1, 2], [0, 1, 0, 0, 2, 1, 0, 0, 0, 1], [0, 2, 0, 0, 3, 2, 0, 0, 0, 1], [1, 3, 0, 2, 0, 1, 1, 0, 1, 1], [0, 2, 0, 2, 1, 0, 1, 1, 0, 2], [2, 2, 0, 0, 2, 1, 0, 1, 2, 1], [0, 2, 0, 0, 1, 1, 1, 0, 1, 2], [3, 2, 0, 1, 2, 2, 2, 2, 0, 1], [0, 2, 0, 0, 1, 2, 1, 1, 2, 0]])#行和最大值归一化,得到规范影响矩阵Brow_sum = np.sum(A, axis = 1)max_sum = np.max(row_sum)B = A/max_sum#综合影响矩阵TT = np.matmul (B, np.linalg.inv(np.identity(A.shape[0]) - B))#计算影响度D,被影响度C,中心度M,原因度RD = np.sum(T, axis = 1)C = np.sum(T, axis = 0)M = D + CR = D - C#判断输出结果要素和原因要素causal_factors = ''result_factors = ''for i in range(len(R)): if R[i] > 0: causal_factors = causal_factors + 'x' + str(i + 1) + ' ' elif R[i] < 0: result_factors = result_factors + 'x' + str(i + 1) + ' 'print("原因要素:" + causal_factors)print("结果要素:" + result_factors)#使用相应的lambda值计算可达矩阵F,并输出节点度排序E = T + np.identity(A.shape[0])lbd = 0.20 # 相应的lambda值F = Efor i in range(A.shape[0]): for j in range(A.shape[1]): if E[i, j] > lbd: F[i,j] = 1 elif E[i, j] < lbd: F[i, j] = 0node_degree = np.sum(F, axis = 0) + np.sum(F, axis = 1)print(sorted(node_degree, reverse=True))

上面代码计算出的一些矩阵和值比较重要,如综合影响矩阵TTT,被影响度CCC、影响度DDD、原因度MMM、中心度RRR等,数据在下面的画图也有用的,笔者在此没有输出,在做研究的过程中可以用pandas库将相应的值输出到excel表中。 λ\lambdaλ的取值也很关键,具体取何值下文有说明,这里取0.20,得到最后的可达矩阵如下图所示。

原因-结果图

接下来运用上文计算的结果,绘制原因-结果图,这张图可以看到各个因子之间互相影响的大小,以及对研究内容影响的大小,如下图所示。 第1类为强原因因子集(第Ⅰ区),这类因子对研究对象的形成具有非常显著的影响,且对其他结果型因子有较大的影响;第2类为弱原因因子集(第Ⅱ区),这类因子对研究对象的形成也具有重要影响,对其他结果型因子也有一定的影响;第3类为弱结果因子集(第Ⅲ区),这类因子是其他原因型因子综合作用的结果,对研究对象的形成具有一定的影响;第4类为强结果因子集(第Ⅳ区),这类因子也是其他原因型因子综合作用的结果,但是对研究对象的形成具有非常重要的影响。DEMATEL计算所得因子中心度越大,其影响程度也就越大,因此,需要重点关注第Ⅰ区的强原因因子集及第Ⅳ区的强结果因子集。

下面是原因-结果图的代码,为了图形美观,笔者代码水平也很有限,所以做了大量的调整,大家可以看着自己来。

import matplotlib as mplimport matplotlib.pyplot as plt#设置图形格式config = { "font.family": 'serif', "font.size": 14, "mathtext.fontset": 'stix', "font.serif": ['SimSun'], 'axes.unicode_minus': False }mpl.rcParams.update(config)#x轴为上文计算出的中心度x = [2.9456079466124003, 3.243636237536544, 0.5565493379272154, 1.9429001271455832, 3.205862930468748, 2.627384244237508, 2.4431692291267364, 1.891879956077375, 3.017054245988732, 2.609503379763571]y = [1.5128414543332274, -0.9939990519336557, 0.5565493379272154, -0.1661886145842798, -0.8173828786366384, -0.6568575842419181, 0.3753242725311403, -0.015046149922503416, 0.6625117023194962, -0.4577524877920831]#因子名factors_name = [r'$x_1$', r'$x_2$', r'$x_3$', r'$x_4$', r'$x_5$', r'$x_6$', r'$x_7$', r'$x_8$', r'$x_9$', r'$x_{10}$']#画散点图,并增加相应名称、线段和调整大小和位置plt.scatter(x, y, s=3, c='k')plt.xlabel('中心度')plt.ylabel('原因度')for i in range(len(x)): if i == 0: plt.text(x[i]+0.025, y[i]-0.085, factors_name[i], fontsize=17) elif i == 3: plt.text(x[i]+0.025, y[i]-0.1, factors_name[i], fontsize=17) elif i == 6: plt.text(x[i]-0.18, y[i]-0.1, factors_name[i], fontsize=17) elif i == 7: plt.text(x[i]-0.15, y[i]-0.12, factors_name[i], fontsize=17) else: plt.text(x[i]+0.025, y[i]+0.025, factors_name[i], fontsize=17)plt.vlines(sum(x)/len(x), -1.55, 1.55, colors='k', linestyles='dashed')plt.hlines(0, sum(x)/len(x)-2, sum(x)/len(x)+2, colors='k', linestyles='dashed')plt.xlim(sum(x)/len(x)-2, sum(x)/len(x)+2)plt.ylim(-1.55, 1.55)plt.text(sum(x)/len(x)+2-0.2, 1.4-0.1, 'Ⅰ')plt.text(sum(x)/len(x)-2+0.1, 1.4-0.1, 'Ⅱ')plt.text(sum(x)/len(x)-2+0.1, -1.55+0.1, 'Ⅲ')plt.text(sum(x)/len(x)+2-0.2, -1.55+0.1, 'Ⅳ')plt.show()节点度图

可达矩阵中每个因素所在行与所在列的和称为该因素的节点度,将各阈值对应的节点度由大到小排列,可得到不同阈值下疫情下大学生焦虑情绪形成因子的节点度衰减散点图。 为了得到可达矩阵,需要引入阈值剔除影响程度较小的关系,λ\lambdaλ通常通过经验取值比较。这里分别取0.18、0.20、0.24和0.27 相应代码如下:

import matplotlib as mplimport matplotlib.pyplot as plt#设置图片格式config = { "font.family": 'serif', "font.size": 14, "mathtext.fontset": 'stix', "font.serif": ['SimSun'], 'axes.unicode_minus': False }mpl.rcParams.update(config)#x轴为递增的整数,y轴分别为不同lambda值时候的节点度,节点度在上文代码中可以算出x = list(range(1, 11))y_1 = [13.0, 12.0, 12.0, 11.0, 10.0, 10.0, 9.0, 7.0, 6.0, 2.0] # lbd = 0.15y_2 = [12.0, 11.0, 11.0, 8.0, 7.0, 7.0, 6.0, 5.0, 5.0, 2.0] # lbd = 0.18y_3 = [11.0, 8.0, 8.0, 7.0, 5.0, 4.0, 4.0, 4.0, 3.0, 2.0] # lbd = 0.20y_4 = [8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 3.0, 2.0, 2.0, 2.0] # lbd = 0.24#画图plt.plot(x, y_1, marker='o', linestyle='-', label='λ=0.15', linewidth=1, color='black')plt.plot(x, y_2, marker='x', linestyle='-', label='λ=0.18', linewidth=1, color='black')plt.plot(x, y_3, marker='*', linestyle='-', label='λ=0.20', linewidth=1, color='black')plt.plot(x, y_4, marker='D', linestyle='-', label='λ=0.24', linewidth=1, color='black')plt.legend()plt.xlabel("序号")plt.ylabel("节点度")plt.show()ISM图

通过最后的步骤可以做出系统要素间多级递阶有向拓扑图,这里就不展示了,根据步骤即刻得到之间的关系并作图。

后记

DEMATEL-ISM模型,更多只是矩阵间的相互计算,想要得出结果还是比较容易的。 它可以用来分析因子间的相互关系,做出阶梯式的关系模型图,但是也有主观性强等的缺点。 因为笔者水平有限,所以分析和代码可能不尽人意,多多包含~


李广利,严一知,刘文琦,陈耀光,吴泽玉.基于DEMATEL-ISM的矿工不安全情绪形成因子研究[J]…中国安全科学学报,2021,31(07):30-37.DOI:10.16265/j.cnki.issn1003-3033.2021.07.005. ↩︎

A python library for MCDA methods. ↩︎

本文链接地址:https://www.jiuchutong.com/zhishi/299645.html 转载请保留说明!

上一篇:HTML+CSS简单漫画网页设计成品 蜡笔小新3页 大学生个人HTML网页制作作品(html动画教程)

下一篇:【中秋快乐】如何用three.js实现我的太空遐想3D网页(中秋快乐的祝福语怎么说)

  • vivos12怎么录屏(vivos12怎么录屏和关闭)

    vivos12怎么录屏(vivos12怎么录屏和关闭)

  • opporeno7是双扬声器吗(oppok7x是双扬声器)

    opporeno7是双扬声器吗(oppok7x是双扬声器)

  • 华为翻译功能怎么打开(华为翻译功能怎么用p30)

    华为翻译功能怎么打开(华为翻译功能怎么用p30)

  • 成都地铁用手机怎么刷(成都地铁用手机支付付费几折)

    成都地铁用手机怎么刷(成都地铁用手机支付付费几折)

  • qq主题怎么恢复默认(qq主题怎么恢复默认白色)

    qq主题怎么恢复默认(qq主题怎么恢复默认白色)

  • 微信怎么不显示忙线中(微信怎么不显示有几条新消息)

    微信怎么不显示忙线中(微信怎么不显示有几条新消息)

  • 嘀嗒出行打不开(嘀嗒出行打不到车怎么办)

    嘀嗒出行打不开(嘀嗒出行打不到车怎么办)

  • 华为能用oppo闪充吗(华为手机能用oppo手机充电器吗)

    华为能用oppo闪充吗(华为手机能用oppo手机充电器吗)

  • 淘宝评分红色和灰色有什么区别(淘宝评分红色和绿色有什么区别)

    淘宝评分红色和灰色有什么区别(淘宝评分红色和绿色有什么区别)

  • 抖音里面的变身特效是怎么弄的(抖音里面变身小程序 必须要达到粉丝数吗?)

    抖音里面的变身特效是怎么弄的(抖音里面变身小程序 必须要达到粉丝数吗?)

  • 差评多久之后不能删除(差评多久之后不显示了)

    差评多久之后不能删除(差评多久之后不显示了)

  • 备忘录突然变空白(备忘录为什么突然空了)

    备忘录突然变空白(备忘录为什么突然空了)

  • 闲鱼申请退货卖家不处理怎么办(闲鱼申请退货卖家拒绝)

    闲鱼申请退货卖家不处理怎么办(闲鱼申请退货卖家拒绝)

  • airpods能连win7电脑吗(airpodspro连win7电脑)

    airpods能连win7电脑吗(airpodspro连win7电脑)

  • 微博可以搜索手机号加人吗(微博可以搜索手机号加好友吗)

    微博可以搜索手机号加人吗(微博可以搜索手机号加好友吗)

  • 手机有网电视没网怎么回事(手机有网电视没网能投屏吗)

    手机有网电视没网怎么回事(手机有网电视没网能投屏吗)

  • 单反相机与数码相机的区别(单反相机与数码摄像机的区别)

    单反相机与数码相机的区别(单反相机与数码摄像机的区别)

  • 华为m30pro什么时候上市(华为m30pro评测)

    华为m30pro什么时候上市(华为m30pro评测)

  • 华为相册图片更改顺序(华为手机更改相片存储位置)

    华为相册图片更改顺序(华为手机更改相片存储位置)

  • vivo手机计算器怎么开立方根(vivo手机计算器怎么看历史记录)

    vivo手机计算器怎么开立方根(vivo手机计算器怎么看历史记录)

  • m2固态散热片怎么装(m2固态散热片怎么安装)

    m2固态散热片怎么装(m2固态散热片怎么安装)

  • 手机4g 128g是什么意思(手机上4g+128g是什么意思)

    手机4g 128g是什么意思(手机上4g+128g是什么意思)

  • qq安全扫描失败(qq安全扫描失败怎么回事)

    qq安全扫描失败(qq安全扫描失败怎么回事)

  • 百香果的副作用及禁忌(图文)(百香果的副作用及禁忌是哪些)

    百香果的副作用及禁忌(图文)(百香果的副作用及禁忌是哪些)

  • 织梦导航部分去掉最后一个循环多出来的部分(织梦前台的菜单怎么换)

    织梦导航部分去掉最后一个循环多出来的部分(织梦前台的菜单怎么换)

  • 企业所得税税款可以税前扣除吗
  • 小规模纳税人报税时间
  • 房产税如何交
  • 预缴增值税的会计账务处理
  • 不动产增值税税率变化
  • 实收资本的期末余额在借方还是贷方
  • 公允价值变动借方是增加还是减少
  • 施工排水费是否属于措施费
  • 资产评估费怎么收
  • 建筑公司核定征收是什么意思
  • 消费税申报流程税务实训平台
  • 建筑业小规模纳税人异地开票
  • 土地返还款土地增值税处理
  • 供应商的账怎么记
  • 浙江印花税税率
  • 客户退回货物会计分录
  • win10怎么打开任务管理器
  • won11更新
  • 代扣代缴代收代缴税款业务内容
  • php面向对象是什么意思
  • 负债的概念及流动负债的确认条件
  • 事业单位预付款会计分录
  • 未分配利润转增股本规定
  • 固定资产更新改造的账务处理
  • phpfilter
  • 房地产销售未完工产品收入是含税的吗
  • 免税货物增值税计算公式
  • 投喂小鸟
  • php预处理查询
  • 《中华人民共和国民法典》
  • 长期应收款如何核算
  • 贷款需要考虑什么
  • 总公司不是小微企业,分公司独立核算的
  • 其他机械和设备修理业包括哪些
  • 商户待清算账户是什么
  • wordpress怎么安装插件
  • mysql联合索引使用规则
  • mongodb性能测试
  • 图片加载不存在
  • 防暑降温用品进口品牌
  • 去年留抵税额会计分录
  • 购买加油卡走哪个平台好
  • 一般销售商品收入怎么算
  • 会计核算以什么为主
  • 筹建期间发生的长期借款利息费用计入财务费用
  • 企业发生坏账损失时,在当期确认坏账损失
  • 银行的手续费开票怎么开
  • 国家规定房屋买卖中介费
  • 净水设备配件计算方法
  • 销售费用的主要科目
  • 建筑公司可以收工程款发票吗
  • 成本增加比例怎么算的
  • 库存商品的成本计算
  • 商品销售折让怎么计算
  • 私企需要计提盈余公积吗
  • sql server 1222解决
  • win10文字模糊怎么调整
  • windows10右键菜单打开太慢
  • instmsiw.exe进程简介
  • win10系统无法开机怎么修复
  • win10系统qq语音说话无声音
  • cfg是什么格式,怎么打开
  • win8激活windows
  • 信佛是信教吗
  • Win10预览版拆弹
  • linux从一个命令获取数据到另一个命令
  • jQuery实现两个下拉列表关联
  • js parsejson
  • 批处理改ipv4地址
  • shell脚本 su
  • css 相对定位
  • jquery鼠标点击事件怎么写
  • Python注释详解
  • 税控盘开电子发票流程
  • 如何理解财税一体化
  • 北京税务报到期限
  • 随子女定居外省好吗
  • 税务局网上缴税
  • 火灾损失进项税额怎么处理
  • 城市维护建设税税基是什么
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设