位置: IT常识 - 正文

DEMATEL-ISM模型的Python实现——方法介绍以及代码复现(dematel模型有什么缺点)

编辑:rootadmin
DEMATEL-ISM模型的Python实现——方法介绍以及代码复现 DEMATEL-ISM模型的Python实现——方法介绍以及代码复现前言DEMATEL-ISM分析方法方法简介步骤明确系统要素确定直接影响矩阵规范影响矩阵计算综合影响矩阵计算各个要素的影响度、被影响度、中心度和原因度绘制因果图确定整体影响矩阵确定可达矩阵划分层级绘制因素之间的递阶层次结构实例与代码DEMATEL-ISM计算原因-结果图节点度图ISM图后记前言

推荐整理分享DEMATEL-ISM模型的Python实现——方法介绍以及代码复现(dematel模型有什么缺点),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:ism模型步骤,dematel模型有什么缺点,dea-sbm模型,ism模型步骤,dea-sbm模型,m/m/s模型,dematel-ism模型的缺点,m-shel模型,内容如对您有帮助,希望把文章链接给更多的朋友!

本文源于笔者的《系统工程》课程的小组作业,笔者尝试运用DEMATEL-ISM方法来进行分析,建模求解,但在网络上并没有找到相应的,特别是集合DEMATEL-ISM方法的代码。因此自己码了DEMATEL-ISM模型的Python代码,并作为第一个博客发布~

参考文献中,笔者主要参考了李广利等1的研究,本文也将依此论文进行方法解读和代码复现。

网上查找资料的过程中,笔者发现了一个MCDA方法的python代码库2,里面有很多多准则决策分析模型的相关代码,其中就有DEMATEL的代码,笔者做了一定的参考。

DEMATEL-ISM分析方法方法简介

DEMATEL(Decision Making Trial and Evaluation Laboratory),全称为“决策试验和评价实验法”,是一种运用图论与矩阵工具进行系统要素分析的方法,通过分析系统中各要素之间的逻辑关系与直接影响关系,可以判断要素之间关系的有无及其强弱评价。ISM(Interpretative Structural Modelling)法全称为“解释结构模型”,其特点是把复杂的系统分解为若干子系统(要素),通过代数运算将系统构造成一个多级递阶的结构模型。

DEMATEL 模型可利用矩阵运算求出因素间的因果关系和影响强度,通过可视化因素间的因果关 系,得以揭示复杂问题中的关键影响因素及影响程度;但该方法无法有效识别系统中因素的层级结 构。ISM 法则通过分析构成系统的各子系统( 因素或要素) 之间的直接二元相关关系,基于布尔代数运算等,构造多级递阶有向拓扑图,但无法确定要素对系统的影响程度。

将两种方法结合,可以识别系统中关键要素及其影响程度,并构建要素的层级结构。DEMATEL-ISM方法的过程如下:

步骤明确系统要素

明确分析系统所构成的要素,将构成系统的要素标记为x1x_1x1​, x2x_2x2​, x3x_3x3​, …\ldots…, xnx_nxn​。

确定直接影响矩阵

采用专家打分法,比较xix_ixi​对xjx_jxj​的影响,由于因素与自身比较为没有影响,直接影响矩阵的对角线值为0。通过比较得到直接影响矩阵AAA。 A=[x12⋯x1nx21⋯x2n⋮⋮⋱⋮xm1xm2…]\begin{align} A= \begin{bmatrix} 0&x_{12}&\cdots&x_{1n}\\ x_{21}&0&\cdots&x_{2n}\\ \vdots &\vdots&\ddots &\vdots \\ x_{m1}&x_{m2}&\dots &0 \end{bmatrix} \end{align}A=​0x21​⋮xm1​​x12​0⋮xm2​​⋯⋯⋱…​x1n​x2n​⋮0​​​​ 式中因素xij(i=1,2,…,m;j=1,2,…,n;i≠j)x_{ij}(i=1,2, \ldots, m;j=1,2, \ldots,n;i\neq j)xij​(i=1,2,…,m;j=1,2,…,n;i=j)表示因素xix_ixi​对xjx_jxj​的直接影响。i=ji=ji=j时,xij=x_{ij}=0xij​=0。

规范影响矩阵

归一化原始关系矩阵得到规范影响矩阵。归一化方法有很多种,这里可以采用行最大值法进行归一化,即将矩阵AAA的每一行求和,在这些值中取最大值,将矩阵AAA中元素除以最大值,得到规范直接影响矩阵BBB。 B=xijmax(∑j=1nxij)\begin{align} B=\frac{x_{ij}}{max(\sum\limits_{j=1}^n x_{ij})} \end{align}B=max(j=1∑n​xij​)xij​​​​

计算综合影响矩阵

综合系统矩阵体现系统中各个元素间的影响的综合效应,规范影响矩阵不断自乘后矩阵的所有值会趋近于0,即lim⁡k→∞Bk=\lim\limits_{k \to \infty} B^k=0k→∞lim​Bk=0。计算综合影响矩阵时,得到 T=(B+B2+⋯+Bk)=∑k=1∞Bk=B(I−B)−1\begin{align} T=(B+B^2+\dots +B^k)=\sum\limits_{k=1}^\infty B^k=B(I-B)^{-1} \end{align}T=(B+B2+⋯+Bk)=k=1∑∞​Bk=B(I−B)−1​​ 式中为III单位矩阵。

计算各个要素的影响度、被影响度、中心度和原因度

影响度指矩阵TTT中各行值和,表示各行要素对其他所有要素的综合影响值,记作DiD_iDi​,有: Di=∑j=1nxij,(i=1,2,…,n)\begin{align} D_i=\sum\limits_{j=1}^n x_{ij},(i=1,2,\dots,n) \end{align}Di​=j=1∑n​xij​,(i=1,2,…,n)​​ 被影响度指矩阵TTT中各列值和,表示各列要素对其他所有要素的综合影响值,记作CiC_iCi​,有: Ci=∑j=1nxji,(i=1,2,…,n)\begin{align} C_i=\sum\limits_{j=1}^n x_{ji},(i=1,2,\dots,n) \end{align}Ci​=j=1∑n​xji​,(i=1,2,…,n)​​ 中心度表示因素在评价体系中的位置及其所起作用的大小,某要素的中心度为其影响度于被影响度之和,记作MiM_iMi​,有: Mi=Di+Ci\begin{align} M_i=D_i+C_i \end{align}Mi​=Di​+Ci​​​ 原因度由某要素的影响度和被影响度相减得到,记作,有: Ri=Di−Ci\begin{align} R_i=D_i-C_i \end{align}Ri​=Di​−Ci​​​ 当原因度大于0时,表示该要素对其他要素的影响程度大,称其为原因要素,当原因度小于0时,该要素为结果要素。

绘制因果图DEMATEL-ISM模型的Python实现——方法介绍以及代码复现(dematel模型有什么缺点)

将中心度MiM_iMi​为横坐标,将原因度RiR_iRi​作为纵坐标,绘制因果关系图。该图可以直观体现因果关系。

确定整体影响矩阵

整体影响矩阵由综合影响矩阵和单位矩阵相加得到。

确定可达矩阵

确定可达矩阵时需要引入一个阈值λ\lambdaλ以剔除因素之间影响程度较小的关系,从而明确层级结构的划分。引入阈值λ\lambdaλ对整体影响矩阵EEE进行处理,可以得到可达矩阵FFF。则有: fij={1eij≥λ(i,j=1,2,…,n)eij<λ(i,j=1,2,…,n)\begin{equation} f_{ij}= \begin{cases} 1 & & {e_{ij}\geq\lambda(i,j=1,2,\dots,n)}\\ 0 & & {e_{ij}<\lambda(i,j=1,2,\dots,n)} \end{cases} \end{equation}fij​={10​​eij​≥λ(i,j=1,2,…,n)eij​<λ(i,j=1,2,…,n)​​​

划分层级

由可达矩阵FFF的第iii行上值为1的列对应的因素求得可达集R(x1)={xi∣Fij=1}R(x_1)=\{x_i|F_{ij} =1\}R(x1​)={xi​∣Fij​=1},表示从因素xix_ixi​出发可以达到的全部因素的合集,由可达矩阵FFF的第iii列上值为1的行对应的因素求得先行集S(x1)={xi∣Fji=1}S(x_1)=\{x_i|F_{ji} =1\}S(x1​)={xi​∣Fji​=1},表示可以达到因素的全部因素的合集。如果R(x1)R(x_1)R(x1​)和S(x1)S(x_1)S(x1​)满足R(x1)∩S(x1)=R(x1)R(x_1)\cap S(x_1)=R(x_1)R(x1​)∩S(x1​)=R(x1​),则表示中对应的元素均能在中找到前因,将该元素称为高层级的元素。然后从可达矩阵中去除对应的行和列,再从矩阵中抽取最高级的因素,不断重复该过程,直到所有的行和列均被去除。

绘制因素之间的递阶层次结构

根据去除因素的顺序,绘制系统要素间多级递阶有向拓扑图。

实例与代码DEMATEL-ISM计算

这里笔者直接给出一组数据,10项因素,直接影响矩阵AAA如下。

下面是DEMETAL-ISM计算的Python代码:

#导入所需库import numpy as npimport pandas as pd#直接影响矩阵AA = np.array([[0, 2, 0, 2, 3, 2, 3, 2, 3, 2], [0, 0, 0, 1, 3, 2, 0, 1, 1, 2], [0, 1, 0, 0, 2, 1, 0, 0, 0, 1], [0, 2, 0, 0, 3, 2, 0, 0, 0, 1], [1, 3, 0, 2, 0, 1, 1, 0, 1, 1], [0, 2, 0, 2, 1, 0, 1, 1, 0, 2], [2, 2, 0, 0, 2, 1, 0, 1, 2, 1], [0, 2, 0, 0, 1, 1, 1, 0, 1, 2], [3, 2, 0, 1, 2, 2, 2, 2, 0, 1], [0, 2, 0, 0, 1, 2, 1, 1, 2, 0]])#行和最大值归一化,得到规范影响矩阵Brow_sum = np.sum(A, axis = 1)max_sum = np.max(row_sum)B = A/max_sum#综合影响矩阵TT = np.matmul (B, np.linalg.inv(np.identity(A.shape[0]) - B))#计算影响度D,被影响度C,中心度M,原因度RD = np.sum(T, axis = 1)C = np.sum(T, axis = 0)M = D + CR = D - C#判断输出结果要素和原因要素causal_factors = ''result_factors = ''for i in range(len(R)): if R[i] > 0: causal_factors = causal_factors + 'x' + str(i + 1) + ' ' elif R[i] < 0: result_factors = result_factors + 'x' + str(i + 1) + ' 'print("原因要素:" + causal_factors)print("结果要素:" + result_factors)#使用相应的lambda值计算可达矩阵F,并输出节点度排序E = T + np.identity(A.shape[0])lbd = 0.20 # 相应的lambda值F = Efor i in range(A.shape[0]): for j in range(A.shape[1]): if E[i, j] > lbd: F[i,j] = 1 elif E[i, j] < lbd: F[i, j] = 0node_degree = np.sum(F, axis = 0) + np.sum(F, axis = 1)print(sorted(node_degree, reverse=True))

上面代码计算出的一些矩阵和值比较重要,如综合影响矩阵TTT,被影响度CCC、影响度DDD、原因度MMM、中心度RRR等,数据在下面的画图也有用的,笔者在此没有输出,在做研究的过程中可以用pandas库将相应的值输出到excel表中。 λ\lambdaλ的取值也很关键,具体取何值下文有说明,这里取0.20,得到最后的可达矩阵如下图所示。

原因-结果图

接下来运用上文计算的结果,绘制原因-结果图,这张图可以看到各个因子之间互相影响的大小,以及对研究内容影响的大小,如下图所示。 第1类为强原因因子集(第Ⅰ区),这类因子对研究对象的形成具有非常显著的影响,且对其他结果型因子有较大的影响;第2类为弱原因因子集(第Ⅱ区),这类因子对研究对象的形成也具有重要影响,对其他结果型因子也有一定的影响;第3类为弱结果因子集(第Ⅲ区),这类因子是其他原因型因子综合作用的结果,对研究对象的形成具有一定的影响;第4类为强结果因子集(第Ⅳ区),这类因子也是其他原因型因子综合作用的结果,但是对研究对象的形成具有非常重要的影响。DEMATEL计算所得因子中心度越大,其影响程度也就越大,因此,需要重点关注第Ⅰ区的强原因因子集及第Ⅳ区的强结果因子集。

下面是原因-结果图的代码,为了图形美观,笔者代码水平也很有限,所以做了大量的调整,大家可以看着自己来。

import matplotlib as mplimport matplotlib.pyplot as plt#设置图形格式config = { "font.family": 'serif', "font.size": 14, "mathtext.fontset": 'stix', "font.serif": ['SimSun'], 'axes.unicode_minus': False }mpl.rcParams.update(config)#x轴为上文计算出的中心度x = [2.9456079466124003, 3.243636237536544, 0.5565493379272154, 1.9429001271455832, 3.205862930468748, 2.627384244237508, 2.4431692291267364, 1.891879956077375, 3.017054245988732, 2.609503379763571]y = [1.5128414543332274, -0.9939990519336557, 0.5565493379272154, -0.1661886145842798, -0.8173828786366384, -0.6568575842419181, 0.3753242725311403, -0.015046149922503416, 0.6625117023194962, -0.4577524877920831]#因子名factors_name = [r'$x_1$', r'$x_2$', r'$x_3$', r'$x_4$', r'$x_5$', r'$x_6$', r'$x_7$', r'$x_8$', r'$x_9$', r'$x_{10}$']#画散点图,并增加相应名称、线段和调整大小和位置plt.scatter(x, y, s=3, c='k')plt.xlabel('中心度')plt.ylabel('原因度')for i in range(len(x)): if i == 0: plt.text(x[i]+0.025, y[i]-0.085, factors_name[i], fontsize=17) elif i == 3: plt.text(x[i]+0.025, y[i]-0.1, factors_name[i], fontsize=17) elif i == 6: plt.text(x[i]-0.18, y[i]-0.1, factors_name[i], fontsize=17) elif i == 7: plt.text(x[i]-0.15, y[i]-0.12, factors_name[i], fontsize=17) else: plt.text(x[i]+0.025, y[i]+0.025, factors_name[i], fontsize=17)plt.vlines(sum(x)/len(x), -1.55, 1.55, colors='k', linestyles='dashed')plt.hlines(0, sum(x)/len(x)-2, sum(x)/len(x)+2, colors='k', linestyles='dashed')plt.xlim(sum(x)/len(x)-2, sum(x)/len(x)+2)plt.ylim(-1.55, 1.55)plt.text(sum(x)/len(x)+2-0.2, 1.4-0.1, 'Ⅰ')plt.text(sum(x)/len(x)-2+0.1, 1.4-0.1, 'Ⅱ')plt.text(sum(x)/len(x)-2+0.1, -1.55+0.1, 'Ⅲ')plt.text(sum(x)/len(x)+2-0.2, -1.55+0.1, 'Ⅳ')plt.show()节点度图

可达矩阵中每个因素所在行与所在列的和称为该因素的节点度,将各阈值对应的节点度由大到小排列,可得到不同阈值下疫情下大学生焦虑情绪形成因子的节点度衰减散点图。 为了得到可达矩阵,需要引入阈值剔除影响程度较小的关系,λ\lambdaλ通常通过经验取值比较。这里分别取0.18、0.20、0.24和0.27 相应代码如下:

import matplotlib as mplimport matplotlib.pyplot as plt#设置图片格式config = { "font.family": 'serif', "font.size": 14, "mathtext.fontset": 'stix', "font.serif": ['SimSun'], 'axes.unicode_minus': False }mpl.rcParams.update(config)#x轴为递增的整数,y轴分别为不同lambda值时候的节点度,节点度在上文代码中可以算出x = list(range(1, 11))y_1 = [13.0, 12.0, 12.0, 11.0, 10.0, 10.0, 9.0, 7.0, 6.0, 2.0] # lbd = 0.15y_2 = [12.0, 11.0, 11.0, 8.0, 7.0, 7.0, 6.0, 5.0, 5.0, 2.0] # lbd = 0.18y_3 = [11.0, 8.0, 8.0, 7.0, 5.0, 4.0, 4.0, 4.0, 3.0, 2.0] # lbd = 0.20y_4 = [8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 3.0, 2.0, 2.0, 2.0] # lbd = 0.24#画图plt.plot(x, y_1, marker='o', linestyle='-', label='λ=0.15', linewidth=1, color='black')plt.plot(x, y_2, marker='x', linestyle='-', label='λ=0.18', linewidth=1, color='black')plt.plot(x, y_3, marker='*', linestyle='-', label='λ=0.20', linewidth=1, color='black')plt.plot(x, y_4, marker='D', linestyle='-', label='λ=0.24', linewidth=1, color='black')plt.legend()plt.xlabel("序号")plt.ylabel("节点度")plt.show()ISM图

通过最后的步骤可以做出系统要素间多级递阶有向拓扑图,这里就不展示了,根据步骤即刻得到之间的关系并作图。

后记

DEMATEL-ISM模型,更多只是矩阵间的相互计算,想要得出结果还是比较容易的。 它可以用来分析因子间的相互关系,做出阶梯式的关系模型图,但是也有主观性强等的缺点。 因为笔者水平有限,所以分析和代码可能不尽人意,多多包含~


李广利,严一知,刘文琦,陈耀光,吴泽玉.基于DEMATEL-ISM的矿工不安全情绪形成因子研究[J]…中国安全科学学报,2021,31(07):30-37.DOI:10.16265/j.cnki.issn1003-3033.2021.07.005. ↩︎

A python library for MCDA methods. ↩︎

本文链接地址:https://www.jiuchutong.com/zhishi/299645.html 转载请保留说明!

上一篇:HTML+CSS简单漫画网页设计成品 蜡笔小新3页 大学生个人HTML网页制作作品(html动画教程)

下一篇:【中秋快乐】如何用three.js实现我的太空遐想3D网页(中秋快乐的祝福语怎么说)

  • 工商网企业信息查询系统是否被列入经营异常名录

    工商网企业信息查询系统是否被列入经营异常名录

  • zoom怎么设置虚拟背景(zoom怎么设置虚拟人物)

    zoom怎么设置虚拟背景(zoom怎么设置虚拟人物)

  • 华为p40pro可以支持三指截屏吗(华为p40pro可以支持65w)

    华为p40pro可以支持三指截屏吗(华为p40pro可以支持65w)

  • 微信群管理员能@所有人吗(微信群管理员能撤回超过两分钟的消息吗)

    微信群管理员能@所有人吗(微信群管理员能撤回超过两分钟的消息吗)

  • 华为nova7怎么查真伪(华为nova7怎么查出厂日期)

    华为nova7怎么查真伪(华为nova7怎么查出厂日期)

  • kindle卡在广告页面怎么办(kindle广告卡住了怎么办)

    kindle卡在广告页面怎么办(kindle广告卡住了怎么办)

  • 手机外音突然变小了怎么解决(手机外音突然变成听筒播放)

    手机外音突然变小了怎么解决(手机外音突然变成听筒播放)

  • 京东买了东西不想要了怎么办(京东买了东西不发货怎么办)

    京东买了东西不想要了怎么办(京东买了东西不发货怎么办)

  • 一部手机能两个人实名认证吗(一部手机能两个人玩的生存游戏)

    一部手机能两个人实名认证吗(一部手机能两个人玩的生存游戏)

  • ip数据报的大小固定为多少字节(ip数据报的大小取决于物理网络的什么)

    ip数据报的大小固定为多少字节(ip数据报的大小取决于物理网络的什么)

  • 怎样更改微信个性签名(怎样更改微信个人资料中的地区)

    怎样更改微信个性签名(怎样更改微信个人资料中的地区)

  • 快手后台闪退怎么解决方法(快手闪退原因)

    快手后台闪退怎么解决方法(快手闪退原因)

  • 在苹果ipad上怎么做ppt(在苹果iPad上怎么怎么下载字体)

    在苹果ipad上怎么做ppt(在苹果iPad上怎么怎么下载字体)

  • 腾讯会员怎么取消别人登录(腾讯会员怎么取消连续包月)

    腾讯会员怎么取消别人登录(腾讯会员怎么取消连续包月)

  • 八核处理器是骁龙多少(八核处理器是骁龙660)

    八核处理器是骁龙多少(八核处理器是骁龙660)

  • ppt页脚文字怎么统一修改(ppt页脚文字怎么设置)

    ppt页脚文字怎么统一修改(ppt页脚文字怎么设置)

  • 小米cc9支持27瓦快充吗(小米cc9支持33w快充吗)

    小米cc9支持27瓦快充吗(小米cc9支持33w快充吗)

  • vivo安全认证怎么解除(vivo怎么关安全验证)

    vivo安全认证怎么解除(vivo怎么关安全验证)

  • 淘宝有补货提醒吗(淘宝补货提醒软件)

    淘宝有补货提醒吗(淘宝补货提醒软件)

  • 华为荣耀20怎么卸载软件(华为荣耀20怎么刷机)

    华为荣耀20怎么卸载软件(华为荣耀20怎么刷机)

  • 华为mate30pro插卡位置(华为mate30pro插卡口在哪里)

    华为mate30pro插卡位置(华为mate30pro插卡口在哪里)

  • word2010的word选项在哪(word2010各选项卡的功能有哪些)

    word2010的word选项在哪(word2010各选项卡的功能有哪些)

  • 微信给朋友发视频最多几分钟(微信给朋友发视频会不会封)

    微信给朋友发视频最多几分钟(微信给朋友发视频会不会封)

  • 淘宝怎么绑定钉钉(淘宝钉钉怎么绑定店铺)

    淘宝怎么绑定钉钉(淘宝钉钉怎么绑定店铺)

  • 爱奇艺公司总部在哪(爱奇艺公司总部大楼)

    爱奇艺公司总部在哪(爱奇艺公司总部大楼)

  • 一体机卡死了怎么办(一体机卡住了怎么重启)

    一体机卡死了怎么办(一体机卡住了怎么重启)

  • ps中如何使用切图工具切图?(ps中如何使用切片工具)

    ps中如何使用切图工具切图?(ps中如何使用切片工具)

  • 出口退税退的是进项税还是销项税
  • 亏损企业股权转让
  • 土地增值税计入固定资产清理
  • 行政单位调拨的固定资产申请报告
  • 索赔费用项目
  • 服务免税销售额
  • 外商投资企业母公司派到境内职员回国后
  • 软件技术服务费算无形资产吗
  • 对外支付佣金代扣代缴
  • 预缴企业所得税税率
  • 董事监事的报酬包括哪些
  • 总资产周转率ttm
  • 出纳可以做记账表格吗
  • 年薪超过12万交多少税
  • 技术合同 免税
  • 财产租赁所得的税率是多少
  • 企业研发活动中心职责
  • 评估的房产如何入账
  • 餐饮费开专票
  • 苹果系统怎么修改开机密码
  • 怎样获取
  • mac和wondows
  • 固定资产的财务处理方法
  • windows10更新会丢失数据吗
  • mmcexe进程异常报错
  • 支付费用没有发票怎么做账务处理
  • mcrlnstaller
  • 带息应收票据计息时
  • 进程process.acore已停止怎么办
  • vue项目页面写在哪里
  • PHP daddslashes 使用方法介绍
  • 房产税去哪交税
  • 注册资金不能到位怎么办
  • 电子承兑汇票支付流程
  • vue3打包优化
  • php中的函数
  • 特定业务计算的应纳税所得额是指
  • 分期收款企业所得税确认时间
  • php遍历数组使用的是
  • css设置背景图片填充
  • 企业所得税资产总额平均值怎么算
  • 税务代开,开错了重开要多久?
  • 研发费用大于收入
  • 个体工商户加盟店名字和营业执照不符合
  • 企业应设置的账簿包括什么
  • sqlserver创建临时表语句
  • 电子发票如何作废,具体怎么操作
  • 股权转让所得如何申报个税
  • 公司的资本公积金
  • 办公室搬迁工作
  • 汽车抵押贷款会计分录
  • 个人垫付社保会计分录
  • 哪些个体户要报残保金
  • 环保局检查锅炉房都查什么
  • 建筑业营改增的主要内容
  • 新办企业建账
  • 红字发票怎样记账
  • mysql的基本介绍
  • vista升级选项灰色
  • ubuntu fsl
  • ubuntu怎么切换到桌面
  • sudo service: command not found 报错的解决方法
  • win8如何设置
  • win7系统插u盘没反应怎么办
  • Linux系统中配置网络
  • cocos2dx安装和初步使用
  • c++服务器与客户端连接
  • 修改cmd中显示的用户名!
  • javascript高级程序设计电子版
  • python fabric实现远程部署
  • jquery属性选择器,选取所有带href
  • js easyui
  • js中.html
  • python继承的主要目的
  • 广东增值税电子普通发票怎么开
  • 税务局副科长工资
  • 西安车辆购置税在线交费
  • 存量房交易税费申报表是契证吗
  • 5种方式教你如何查询
  • 国家个人所得税征收标准
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设