位置: IT常识 - 正文

【tensorflow】制作自己的数据集(tensorflow gui)

编辑:rootadmin
【tensorflow】制作自己的数据集

推荐整理分享【tensorflow】制作自己的数据集(tensorflow gui),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:tensorflow教程,tensorflow jit,tensorflow jit,tensorflow1,tensorflow教程,tensorflow1 教程,tensorflow1 教程,tensorflows,内容如对您有帮助,希望把文章链接给更多的朋友!

  🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝

🥰 博客首页:knighthood2001

😗 欢迎点赞👍评论🗨️

❤️ 热爱python,期待与大家一同进步成长!!❤️

目录

数据集的基本介绍

tensorflow中的数据集

什么是TFDS

安装TFDS

用TFDS加载数据集

实例:将模拟数据制作成内存对象数据集

①生成模拟数据

②定义占位符

③建立session会话,获取并显示模拟数据。

④模拟数据可视化

运行结果

改进:创建带有迭代值并支持乱序功能的模拟数据集 


数据集的基本介绍

        数据集是样本的集合,在深度学习中,数据集用于模型训练。再用tensorflow框架开发深度学习模型之前,需要为模型准备好数据集。在训练模型环节,程序需要从数据集中不断地将数据输入模型,模型通过对注入数据的计算来学习特征。

tensorflow中的数据集

tensorflow中有4种数据集格式

        内存对象数据集:直接用字典变量feed_dict,通过注入模式向模型中输入数据。该数据集适用于少量的数据集输入。

        TFRecord数据集:用队列式管道(tfrecord)向模型输入数据。该数据集适用大量的数据集输入。

        Dataset数据集:通过性能更高的输入管道(tf.data)向模型输入数据。该数据集适用于tensorflow1.4之后的版本。

        tf.keras接口数据集:支持tf.keras语法的数据集接口。该数据集适用于tensorflow1.4之后的版本。

什么是TFDS

        TFDS是tensorflow中的数据集集合模块,该模块将常用的数据及封装起来,实现自动下载与统一的调用接口,为开发模型提供了便利。

安装TFDS

要求:tensorflow版本在1.12及以上。安装命令如下:

pip install tensorflow-datasets用TFDS加载数据集

这里以minst数据集为例

import tensorflow_datasets as tfdsprint(tfds.list_builders())ds_train, ds_test = tfds.load(name='mnist', split=["train", "test"])ds_train = ds_train.shuffle(1000).batch(128).prefetch(10)for features in ds_train.take(1): image, label = features["image"], ["label"]

重要结果如下:

Downloading and preparing dataset Unknown size (download: Unknown size, generated: Unknown size, total: Unknown size) to ~\tensorflow_datasets\mnist\3.0.1...Dataset mnist downloaded and prepared to ~\tensorflow_datasets\mnist\3.0.1. Subsequent calls will reuse this data.实例:将模拟数据制作成内存对象数据集

        本实例将用内存中的模拟数据来制作成数据集,生成的数据集被直接存放在python内存对象中,这样做的好处--数据集的制作可以独立于任何框架。

        本实例将生成一个模拟y≈2x的数据集,并通过静态图的方式显示出来。

步骤如下:

①生成模拟数据

②定义占位符

【tensorflow】制作自己的数据集(tensorflow gui)

③建立session会话,获取并显示模拟数据。

④模拟数据可视化

①生成模拟数据

        在样本制作过程中,最忌讳的是一次性将数据都放入内存中,如果数据量很大,这样容易造成内存用尽,即使是模拟数据,也不建议将数据全部生成以后一次性放入内存中,一般做法是:

Ⅰ创建一个模拟数据生成器,

Ⅱ每次只生成指定批次的样本

这样就在迭代过程中,就可以用“随用随制作”的方法来获取样本数据。

        下面定义GenerateData函数来生成模拟数据,并将GenerateData函数的返回值设为以生成器方式返回。这种做法使内存被占用的最少。

import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plttf.compat.v1.disable_v2_behavior()#在内存中生成模拟数据def GenerateData(batchsize = 100): train_X = np.linspace(-1, 1, batchsize) #train_X为-1到1之间连续的100个浮点数 train_Y = 2 * train_X + np.random.randn(*train_X.shape) * 0.3 # y=2x,但是加入了噪声 yield train_X, train_Y #以生成器的方式返回

        函数使用yield,使得函数以生成器的方式返回数据。生成器对象只生成一次,过后便会自动销毁,可以省略大量的内存。

②定义占位符#定义网络模型结构部分,这里只有占位符张量Xinput = tf.compat.v1.placeholder("float", (None))Yinput = tf.compat.v1.placeholder("float", (None))

注意:在正常的模型开发中,这个环节应该是定义占位符和网络结构,在训练模型时,系统会将数据集的输入数据用占位符来代替,并使用静态图的注入机制,将输入数据传入模型进行迭代训练。因为本实例只需要从数据集中获取数据,所以只定义占位符,不需要定义其他网络节点。

③建立session会话,获取并显示模拟数据。

        首先定义数据集的迭代次数,接着建立会话,在会话中使用两层for循环;第一层是按照迭代次数来循环,第二层是对GenerateData函数返回的生成器对象进行循环,并将数据打印出来。

        因为GenerateData函数返回的生成器对象只有一个元素,所以第二层循环也只运行一次。

#建立会话,获取并输出数据training_epochs = 20 # 定义需要迭代的次数with tf.compat.v1.Session() as sess: # 建立会话(session) for epoch in range(training_epochs): #迭代数据集20遍 for x, y in GenerateData(): #通过for循环打印所有的点 xv,yv = sess.run([Xinput,Yinput],feed_dict={Xinput: x, Yinput: y}) #通过静态图注入的方式,传入数据 print(epoch,"| x.shape:",np.shape(xv),"| x[:3]:",xv[:3]) print(epoch,"| y.shape:",np.shape(yv),"| y[:3]:",yv[:3])

代码开始定义了数据集的迭代次数,这个参数在训练模型中才会用到。

④模拟数据可视化#显示模拟数据点train_data = list(GenerateData())[0]plt.plot(train_data[0], train_data[1], 'ro', label='Original data')plt.legend()plt.show()运行结果...17 |x.shape: (100,) |x[:3]: [-1. -0.97979796 -0.959596 ]17 |y.shape: (100,) |y[:3]: [-2.0945473 -2.1236315 -1.6280223]18 |x.shape: (100,) |x[:3]: [-1. -0.97979796 -0.959596 ]18 |y.shape: (100,) |y[:3]: [-2.022675 -2.118289 -1.8735064]19 |x.shape: (100,) |x[:3]: [-1. -0.97979796 -0.959596 ]19 |y.shape: (100,) |y[:3]: [-2.0080116 -2.5169287 -1.6713679]

每行数据被|符号划分为3块区域,分别为:迭代次数、数据的形状、前三个元素的值。

可视化结果如下

改进:创建带有迭代值并支持乱序功能的模拟数据集 

优化如下:

①将数据集与 迭代功能绑定在一起,让代码变得更简洁。

②对数据集进行乱序排序,让生成的x数据无规则 。

通过对数据集的乱序,可以消除样本中无用的特征,从而大大提升模型的泛化能力。

注意:

在乱序操作部分使用的是sklearn.utils库中的shuffle()方法。要使用,首先需要安装,命令如下:

pip install sklearn

改进后全部代码如下: 

import tensorflow as tfimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.utils import shuffletf.compat.v1.disable_v2_behavior()def GenerateData(training_epochs,batchsize=100): for i in range(training_epochs): train_X=np.linspace(-1,1,batchsize) train_Y=2*train_X+np.random.randn(*train_X.shape)*0.3 yield shuffle(train_X,train_Y),iXinput=tf.compat.v1.placeholder("float",(None))Yinput=tf.compat.v1.placeholder("float",(None))training_epochs=20with tf.compat.v1.Session() as sess: for (x,y),ii in GenerateData(training_epochs): xv,yv=sess.run([Xinput,Yinput],feed_dict={Xinput:x,Yinput:y}) print(ii,"|x.shape:",np.shape(xv),"|x[:3]:",xv[:3]) print(ii,"|y.shape:",np.shape(yv),"|y[:3]:",yv[:3])train_data=list(GenerateData(1))[0]plt.plot(train_data[0][0],train_data[0][1],'ro',label='Original data')plt.legend()plt.show()

可视化结果图片如下:

本文链接地址:https://www.jiuchutong.com/zhishi/299692.html 转载请保留说明!

上一篇:vue2.x与vue3.x中自定义指令详解(vue2vue3的区别)

下一篇:NLP与ChatGPT的碰撞:大模型和小模型联合发力(nlp track)

  • 税后利润和净利润是一样的吗
  • 主营业务利润和利润总额
  • 三证合一后税务登记办理流程
  • 发票专用章和财务章区别
  • 普通发票没有明细可以吗
  • 税务筹划的12种方法知乎
  • 主营业务成本明细账图
  • 居民企业核定征收企业所得税的项目有哪些
  • 购进用于研发的国产设备进项税可以抵扣吗
  • 出售拆迁补偿住房违法吗
  • 工程预付款增值税缴纳办法
  • 事业单位劳务派遣工作值得去吗
  • 弱电系统安装的注意要点
  • 开具发票财务需要管理吗?
  • 商标的费用能抵扣吗
  • 自由职业者知乎
  • 双倍余额折旧法
  • 小规模计提季度怎么算
  • 资源税进什么科目
  • 企业公户转别的公司公户他不给开发票怎么操作?
  • 资产减值损失需要结转吗
  • 核销单取消后出口收汇流程
  • 计提小规模增值税的账务处理
  • 关联交易认定标准税务
  • 广告公司车身广告
  • linux中gzip的用法
  • 销售方开红字发票怎么处理
  • SCHDPL32.EXE - SCHDPL32是什么进程 有什么用
  • phpeach函数
  • php数组的类型有哪些
  • 存货需要计算填列吗
  • 增值税加计扣除比例
  • 借管理费用贷应交税费个人所得税
  • 简易html代码
  • IDEA 2022专业版创建Java Web项目(保姆式小白讲义,强烈建议入手!)
  • 消费税购置税价格一样
  • 国税纳税申报表下载
  • 业务招待费能计入成本吗
  • dedecms默认用户名
  • 接受捐赠收入要缴纳企业所得税吗
  • mongodb aggregate 性能
  • 财务软件费用可以抵税吗
  • 算税负是含税还是不含税
  • 发票可以去做原始凭证吗
  • 保理公司会计核算讲解
  • mysql新手教程
  • 法人一直把公户账户转账
  • 股东投资款可以拿出来吗
  • 贷款利息收入如何计算
  • 分公司企业所得税怎么缴纳
  • 电子税务局实名核验失败
  • 调账和调帐区别
  • 进口关税征收方法
  • 制造费用工资计入什么科目
  • 预收账款和预付账款怎么理解
  • 应扣未扣税款对纳税人的处理
  • 车辆上牌的费用应付多少?
  • 税控盘反写怎么操作流程
  • 行政事业单位经济责任审计的主要内容
  • 其他应收款收不回来了,如何核销
  • 会计记账的方法是如何发展的
  • 账户与会计科目有什么联系与区别?
  • mysql几天能学会
  • mysql 5.7.13 winx64安装配置教程
  • window系统怎么更新版本
  • 用U盘安装系统重启后进不去
  • Win10 Mobile Build 14269版截图曝光:脱胎换骨 速度飙升
  • js 和html
  • js倒计时结束操作
  • jquery实现div左右移动
  • Android studio DrawerLayout
  • python设计gui
  • 超精准的电压基准芯片
  • android数据存储总结
  • python字符串连接join
  • python win10
  • python优先级顺序
  • 河南省地方税务局公告2011年第10号
  • 内蒙古国家税务总局官网
  • 海口市哪个地方最漂亮
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设