位置: IT常识 - 正文

【tensorflow】制作自己的数据集(tensorflow gui)

编辑:rootadmin
【tensorflow】制作自己的数据集

推荐整理分享【tensorflow】制作自己的数据集(tensorflow gui),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:tensorflow教程,tensorflow jit,tensorflow jit,tensorflow1,tensorflow教程,tensorflow1 教程,tensorflow1 教程,tensorflows,内容如对您有帮助,希望把文章链接给更多的朋友!

  🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝

🥰 博客首页:knighthood2001

😗 欢迎点赞👍评论🗨️

❤️ 热爱python,期待与大家一同进步成长!!❤️

目录

数据集的基本介绍

tensorflow中的数据集

什么是TFDS

安装TFDS

用TFDS加载数据集

实例:将模拟数据制作成内存对象数据集

①生成模拟数据

②定义占位符

③建立session会话,获取并显示模拟数据。

④模拟数据可视化

运行结果

改进:创建带有迭代值并支持乱序功能的模拟数据集 


数据集的基本介绍

        数据集是样本的集合,在深度学习中,数据集用于模型训练。再用tensorflow框架开发深度学习模型之前,需要为模型准备好数据集。在训练模型环节,程序需要从数据集中不断地将数据输入模型,模型通过对注入数据的计算来学习特征。

tensorflow中的数据集

tensorflow中有4种数据集格式

        内存对象数据集:直接用字典变量feed_dict,通过注入模式向模型中输入数据。该数据集适用于少量的数据集输入。

        TFRecord数据集:用队列式管道(tfrecord)向模型输入数据。该数据集适用大量的数据集输入。

        Dataset数据集:通过性能更高的输入管道(tf.data)向模型输入数据。该数据集适用于tensorflow1.4之后的版本。

        tf.keras接口数据集:支持tf.keras语法的数据集接口。该数据集适用于tensorflow1.4之后的版本。

什么是TFDS

        TFDS是tensorflow中的数据集集合模块,该模块将常用的数据及封装起来,实现自动下载与统一的调用接口,为开发模型提供了便利。

安装TFDS

要求:tensorflow版本在1.12及以上。安装命令如下:

pip install tensorflow-datasets用TFDS加载数据集

这里以minst数据集为例

import tensorflow_datasets as tfdsprint(tfds.list_builders())ds_train, ds_test = tfds.load(name='mnist', split=["train", "test"])ds_train = ds_train.shuffle(1000).batch(128).prefetch(10)for features in ds_train.take(1): image, label = features["image"], ["label"]

重要结果如下:

Downloading and preparing dataset Unknown size (download: Unknown size, generated: Unknown size, total: Unknown size) to ~\tensorflow_datasets\mnist\3.0.1...Dataset mnist downloaded and prepared to ~\tensorflow_datasets\mnist\3.0.1. Subsequent calls will reuse this data.实例:将模拟数据制作成内存对象数据集

        本实例将用内存中的模拟数据来制作成数据集,生成的数据集被直接存放在python内存对象中,这样做的好处--数据集的制作可以独立于任何框架。

        本实例将生成一个模拟y≈2x的数据集,并通过静态图的方式显示出来。

步骤如下:

①生成模拟数据

②定义占位符

【tensorflow】制作自己的数据集(tensorflow gui)

③建立session会话,获取并显示模拟数据。

④模拟数据可视化

①生成模拟数据

        在样本制作过程中,最忌讳的是一次性将数据都放入内存中,如果数据量很大,这样容易造成内存用尽,即使是模拟数据,也不建议将数据全部生成以后一次性放入内存中,一般做法是:

Ⅰ创建一个模拟数据生成器,

Ⅱ每次只生成指定批次的样本

这样就在迭代过程中,就可以用“随用随制作”的方法来获取样本数据。

        下面定义GenerateData函数来生成模拟数据,并将GenerateData函数的返回值设为以生成器方式返回。这种做法使内存被占用的最少。

import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plttf.compat.v1.disable_v2_behavior()#在内存中生成模拟数据def GenerateData(batchsize = 100): train_X = np.linspace(-1, 1, batchsize) #train_X为-1到1之间连续的100个浮点数 train_Y = 2 * train_X + np.random.randn(*train_X.shape) * 0.3 # y=2x,但是加入了噪声 yield train_X, train_Y #以生成器的方式返回

        函数使用yield,使得函数以生成器的方式返回数据。生成器对象只生成一次,过后便会自动销毁,可以省略大量的内存。

②定义占位符#定义网络模型结构部分,这里只有占位符张量Xinput = tf.compat.v1.placeholder("float", (None))Yinput = tf.compat.v1.placeholder("float", (None))

注意:在正常的模型开发中,这个环节应该是定义占位符和网络结构,在训练模型时,系统会将数据集的输入数据用占位符来代替,并使用静态图的注入机制,将输入数据传入模型进行迭代训练。因为本实例只需要从数据集中获取数据,所以只定义占位符,不需要定义其他网络节点。

③建立session会话,获取并显示模拟数据。

        首先定义数据集的迭代次数,接着建立会话,在会话中使用两层for循环;第一层是按照迭代次数来循环,第二层是对GenerateData函数返回的生成器对象进行循环,并将数据打印出来。

        因为GenerateData函数返回的生成器对象只有一个元素,所以第二层循环也只运行一次。

#建立会话,获取并输出数据training_epochs = 20 # 定义需要迭代的次数with tf.compat.v1.Session() as sess: # 建立会话(session) for epoch in range(training_epochs): #迭代数据集20遍 for x, y in GenerateData(): #通过for循环打印所有的点 xv,yv = sess.run([Xinput,Yinput],feed_dict={Xinput: x, Yinput: y}) #通过静态图注入的方式,传入数据 print(epoch,"| x.shape:",np.shape(xv),"| x[:3]:",xv[:3]) print(epoch,"| y.shape:",np.shape(yv),"| y[:3]:",yv[:3])

代码开始定义了数据集的迭代次数,这个参数在训练模型中才会用到。

④模拟数据可视化#显示模拟数据点train_data = list(GenerateData())[0]plt.plot(train_data[0], train_data[1], 'ro', label='Original data')plt.legend()plt.show()运行结果...17 |x.shape: (100,) |x[:3]: [-1. -0.97979796 -0.959596 ]17 |y.shape: (100,) |y[:3]: [-2.0945473 -2.1236315 -1.6280223]18 |x.shape: (100,) |x[:3]: [-1. -0.97979796 -0.959596 ]18 |y.shape: (100,) |y[:3]: [-2.022675 -2.118289 -1.8735064]19 |x.shape: (100,) |x[:3]: [-1. -0.97979796 -0.959596 ]19 |y.shape: (100,) |y[:3]: [-2.0080116 -2.5169287 -1.6713679]

每行数据被|符号划分为3块区域,分别为:迭代次数、数据的形状、前三个元素的值。

可视化结果如下

改进:创建带有迭代值并支持乱序功能的模拟数据集 

优化如下:

①将数据集与 迭代功能绑定在一起,让代码变得更简洁。

②对数据集进行乱序排序,让生成的x数据无规则 。

通过对数据集的乱序,可以消除样本中无用的特征,从而大大提升模型的泛化能力。

注意:

在乱序操作部分使用的是sklearn.utils库中的shuffle()方法。要使用,首先需要安装,命令如下:

pip install sklearn

改进后全部代码如下: 

import tensorflow as tfimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.utils import shuffletf.compat.v1.disable_v2_behavior()def GenerateData(training_epochs,batchsize=100): for i in range(training_epochs): train_X=np.linspace(-1,1,batchsize) train_Y=2*train_X+np.random.randn(*train_X.shape)*0.3 yield shuffle(train_X,train_Y),iXinput=tf.compat.v1.placeholder("float",(None))Yinput=tf.compat.v1.placeholder("float",(None))training_epochs=20with tf.compat.v1.Session() as sess: for (x,y),ii in GenerateData(training_epochs): xv,yv=sess.run([Xinput,Yinput],feed_dict={Xinput:x,Yinput:y}) print(ii,"|x.shape:",np.shape(xv),"|x[:3]:",xv[:3]) print(ii,"|y.shape:",np.shape(yv),"|y[:3]:",yv[:3])train_data=list(GenerateData(1))[0]plt.plot(train_data[0][0],train_data[0][1],'ro',label='Original data')plt.legend()plt.show()

可视化结果图片如下:

本文链接地址:https://www.jiuchutong.com/zhishi/299692.html 转载请保留说明!

上一篇:vue2.x与vue3.x中自定义指令详解(vue2vue3的区别)

下一篇:NLP与ChatGPT的碰撞:大模型和小模型联合发力(nlp track)

  • 一般纳税人哪些可以开3%的发票吗
  • 职工产假津贴怎么领取
  • 税款减半征收什么意思
  • 商业汇票申请贴现分录
  • 税务局代个人开票
  • 房地产收入成本确认
  • 其他债权投资和其他权益工具投资均可以计提减值
  • 工资薪金所得应纳税所得额
  • 个体工商户亏损
  • 预付卡没用完的可以退吗
  • 主营业务成本如何算
  • 有限公司结业清算
  • 农户贷款免征增值税吗?
  • 个人汽车租给公司租金需多少钱?
  • 哪些情况下工资不低于最低工资标准的80
  • 2019年收入不足6万如何退税
  • 员工罚款可以从工资里扣吗
  • 广告公司确认收入怎么写
  • 一般纳税人取得免税农产品进项怎么抵扣
  • 发票认证的三种方式
  • 已签收的电子银行承兑汇票截图给别人有风险吗
  • 代发工资要缴纳社保吗
  • ElementPlusError:[ElPagination] 你使用了一些已被废弃的用法,请参考 el-pagination 的官方文档
  • win10怎么隐藏菜单栏图标
  • cmt.exe病毒
  • 桔梗的功效与作用吃法
  • 车辆购置税税收缴款书
  • 牛顿地名
  • 固定资产不计提折旧有什么影响
  • 银行转账手续费最高多少钱
  • 其他综合收益什么情况下转入留存收益
  • 季度申报所得税时可以用以前年度亏损吗
  • 如何计提增值税销项税额
  • mysql事务类型
  • 材料短缺计入成本吗
  • 筹建期的收入要交企业所得税吗
  • 上一年的成本没入账怎么做
  • 配置英文
  • 一般纳税人无票收入填在哪一栏
  • 机械租赁开票内容
  • 出口货物弃货
  • 工资个税什么时候用综合所得公式计算
  • 什么叫代销合同
  • 现在购入不动产怎么办
  • 商业企业库存商品成本核算
  • 期末结转主营业务成本
  • 转账错误退款说明
  • 个人技术转让费税率是多少
  • 确认主营业务收入分录怎么写
  • 开票后收不回来款怎么办
  • 没报税可以先清卡吗
  • 公司招待费用会计分录
  • 什么是发票抬头信息
  • 其他流动资产
  • 组策略怎么用
  • ubuntu20.10
  • win8.1流畅吗
  • 千元以内电脑
  • win7注册表详解
  • msoobe.exe是什么
  • win102020h2怎么样
  • 文件夹删不掉显示另一个程序打开
  • linux硬盘io
  • visual studio 无法编译
  • linux查看多线程
  • linux怎么使用shell
  • js查看浏览器信息
  • bat文件加密如何解锁
  • 网吧保存区连接怎么设置
  • 原生js实现promise
  • android基础入门
  • python组合运算
  • javascript面向对象精要pdf下载
  • android天气预报课程设计报告
  • 江苏省高新区地图
  • 怎么查询高速路封闭和开通
  • 小规模纳税人改成一般纳税人怎么改
  • 四川国税网上申报大厅
  • 回迁房有没有装电梯的
  • 太原市地税局各分局局长
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设