位置: IT常识 - 正文

【特征提取】Hog特征原理简介与代码实践(特征提取原理)

编辑:rootadmin
【特征提取】Hog特征原理简介与代码实践 前言

推荐整理分享【特征提取】Hog特征原理简介与代码实践(特征提取原理),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:特征提取后怎么分类,特征提取后怎么分类,特征提取原理,特征提取有什么用,特征提取有什么用,特征提取常用方法,特征提取有什么用,特征提取常用方法,内容如对您有帮助,希望把文章链接给更多的朋友!

在【模式识别】SVM实现人脸表情分类一文中,我曾使用Hog特征+SVM的方式实现表情分类,但对于Hog特征的原理并未做深入整理。此篇将结合scikit-image来简单分析Hog特征的原理和维度关系。因为没看过原论文,因此自己的理解可能会有偏差,如有错误,欢迎评论区指正。

图像梯度

在进入到Hog之前,需要先了解图像中梯度的概念。 以下图为例(图源:[1]),黑色像素点值为0,白色像素点值为1,分别求X方向梯度和Y方向梯度,从后两幅图可以看出,当箭头从0突变到1时,梯度为正值,图像中以白色边缘表示,反之为负值,以黑色的阴影表示。 更进一步,把X方向的梯度和Y方向的梯度进行融合,这样可以计算出每一个像素点的融合梯度大小和方向。 例如,上图中选择了一个像素点,其相邻位置的像素大小如宫格所示,X方向梯度大小为50,Y方向梯度大小为50,那么其融合梯度大小为70.1,方向为45°。

计算公式的数学表达如下[2]:

有了上面的概念之后,下面进入到Hog特征提取的流程。

标准化gamma空间和颜色空间(Gamma/Colour Normalization)

标准化gamma空间和颜色空间是Hog特征提取的第一步。 这一步主要做了3个操作:

1、因为颜色信息影响不大,因此先转化为灰度图;

2、进行gamma校正: gamma<1在高灰度值区域内,动态范围变小,图像对比度降低,图像整体灰度值变大,显得亮一些;gamma>1在低灰度值区域内,动态范围变小,图像对比度降低,图像整体灰度值变小,变得暗淡[3] 校正公式如下: 校正的好处在于:能够有效地降低图像局部的阴影和光照变化

3、对图像尺寸进行重新调整,并让各像素进行归一化;

计算图像梯度

图像预处理之后,就要计算图中每一个像素点的梯度。之前已经给出了图像梯度的计算公式,但在实际使用中,两个方向上的梯度分量可以用卷积的方式来快速计算。

x方向的梯度分量gradscalx:用[-1,0,1]梯度算子对原图像做卷积运算y方向的梯度分量gradscaly:用[1,0,-1]梯度算子对原图像做卷积运算为每个细胞单元构建梯度方向直方图【特征提取】Hog特征原理简介与代码实践(特征提取原理)

下面就需要引入一个细胞单元(Cell)的概念,这里Cell的尺寸可以自由设定,我这里以8 X 8 的尺寸为例,如下图所示: 这张猫选自VOC2012数据集,我对其进行了一定的裁剪。 这里的8 X 8指代一个Cell中包含8 X 8个像素点,例如图中的网格,每个网格代表一个像素点,对于每一个像素点可以计算出一个梯度值和方向。

下面就要统计每个Cell的梯度直方图,通常来说,直方图是用来统计频率的。这里也类似,因此,需要先把360°角度进行分类。按照原作者的说法,分成9份效果最好。于是就有了下面这张图[3]: 这里表示的是每一块为20°,这里初次看可能会有个疑问:360°/9 = 40°,每一块是40°才对,为什么是20°呢? 这是由于角度只看了数值,因此正角度和负角度的符号进行忽略,因此180°/9 = 20° 举个例子,第一个像素点梯度方向为45°,40°<45°<60°,这样它就被划分到第三组。 以此类推,统计一个Cell中每个像素点的角度,就可以得到梯度方向直方图。

把细胞单元组合成大的块(block),并归一化梯度直方图

下一步就要引入另一个新概念:块(block),一些博文中也称作窗口(windows),应该是同一个东西。 还是拿这张猫图举例,假设block的大小为2 X 2,那么就包含2 X 2个cell,所占据的尺寸为(16,16)个像素。 如图中的蓝框代表cell,黄框代表block,这里block的大小也是通过人为指定。 这样,一个block内所有cell的特征向量串联起来便得到该block的HOG特征,同时,需要在块内进行归一化。归一化的方法大致有四种: 根据原作者描述,使用L2-Hys方法效果最好[3]。

至于这里的大小设置,个人理解是和目标的尺寸有关。例如,行人检测的最佳参数设置是:3×3细胞/区间、6×6像素/细胞、9个直方图通道[3]。

移动block,计算维度

下面就到最后一步,一张图里有多个像素,那么通过计算之后,整张图的hog特征的维度是多少呢? 这里我们进入实践,来通过实践来理解block是如何移动的。

首先导库,使用opencv和skimage

import cv2from skimage.feature import hog

定义数据预处理过程,调整图片尺寸为256x256,并将图片进行灰度化和归一化

def preprocessing(src): gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) # 将图像转换成灰度图 img = cv2.resize(gray, (256, 256)) # 尺寸调整g img = img/255.0 # 数据归一化 return img

提取Hog特征

img = cv2.imread("test.jpg")img_afterpro = preprocessing(img)image_features = hog(img_afterpro, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(16, 16), block_norm='L2-Hys')

这里有多个参数,主要的四个参数解释和默认取值如下:

orientations:方向数pixels_per_cell:胞元大小cells_per_block:块大小block_norm:可选块归一化方法L2-Hys(L2范数)

这里图片的大小为(256,256),cell的大小选择为(8,8),block设置为(16,16),那么hog特征总的维度是多少呢?起初我的理解是多个block平铺整个图像,那么每个block大小为(8x16,8x16)=(128,128),即整幅图像有四个block,那么总维度应该是16x16x9x2x2=9216然而通过验证

image_features.shape

输出的实际维度应为665856,差得很远!

于是我想到了卷积神经网络中卷积核的滑动窗口的运动方式,假设这里block也是以滑动窗口的方式进行运动,每次运动的步长为一个cell的宽度,如下图所示: 这里的block应该是(16,16),我这里为了作图方便,仍保留为(2,2),旨在领会传达的意思。 如图所示,每个block计算完成之后,向水平/垂直方向移动一个cell的宽度,这样前一部分的cell会和下一个block再次计算。 这样block总的个数可以这样计算: 水平方向block个数=(256-128)/8 + 1 =17 垂直方向block个数=水平方向block个数=17 那么总维度=16x16x9x17x17=665856

结果证实,该思路是正确的。

Reference

[1]https://www.bilibili.com/video/BV1dz411B7Rd [2]https://blog.csdn.net/zouxy09/article/details/7929348 [3]https://blog.csdn.net/qq_37791134/article/details/81413758

本文链接地址:https://www.jiuchutong.com/zhishi/299724.html 转载请保留说明!

上一篇:学习笔记:深度学习(2)——BP神经网络

下一篇:ChatGPT探索系列之二:学习GPT模型系列的发展历程和原理(探索app下载)

  • oppor9s怎么投屏到电视上去(oppor9s怎么投屏到电脑上)

    oppor9s怎么投屏到电视上去(oppor9s怎么投屏到电脑上)

  • 微信行程轨迹记录在哪里看(微信行程轨迹记录可以记录帮别人买的吗)

    微信行程轨迹记录在哪里看(微信行程轨迹记录可以记录帮别人买的吗)

  • vivoy70s有没有红外线功能(vivoy70t手机有红外线功能吗)

    vivoy70s有没有红外线功能(vivoy70t手机有红外线功能吗)

  • 使用AirPods接电话没声音(连接airpods接电话)

    使用AirPods接电话没声音(连接airpods接电话)

  • 11寸和12.9寸 pro 区别(11寸和12.9寸 pro 大小)

    11寸和12.9寸 pro 区别(11寸和12.9寸 pro 大小)

  • win10的截图快捷键(win10的截图快捷键在哪)

    win10的截图快捷键(win10的截图快捷键在哪)

  • 华为手机有一个白色的圆圈怎么办(华为手机有一个小房子怎么关闭)

    华为手机有一个白色的圆圈怎么办(华为手机有一个小房子怎么关闭)

  • 华为nova7se屏幕多大(华为nova7se屏幕是多大尺寸)

    华为nova7se屏幕多大(华为nova7se屏幕是多大尺寸)

  • 苹果x高多少厘米(苹果x多高多宽)

    苹果x高多少厘米(苹果x多高多宽)

  • 激活系统是什么意思(激活系统和不激活的区别)

    激活系统是什么意思(激活系统和不激活的区别)

  • nova5ipro支持语音唤醒不(华为nova5ipro语音助手怎么语音唤醒)

    nova5ipro支持语音唤醒不(华为nova5ipro语音助手怎么语音唤醒)

  • 2k 144hz需要什么显卡(2k144hz需要什么cpu)

    2k 144hz需要什么显卡(2k144hz需要什么cpu)

  • 联想小新和扬天区别(联想小新和扬天系列一体机哪个更好)

    联想小新和扬天区别(联想小新和扬天系列一体机哪个更好)

  • 手机的cpu可以加硅脂不(手机cpu改装)

    手机的cpu可以加硅脂不(手机cpu改装)

  • 快手可以加微信好友吗(快手可以加微信吗怎么加)

    快手可以加微信好友吗(快手可以加微信吗怎么加)

  • 物联卡网络慢怎么解决(物联卡网速慢是怎么回事)

    物联卡网络慢怎么解决(物联卡网速慢是怎么回事)

  • 小米cc9e支持多少快充(小米cc9e支持多少A数据线)

    小米cc9e支持多少快充(小米cc9e支持多少A数据线)

  • 数据传输的同步技术有哪两种(数据传输同步技术可以用来验证)

    数据传输的同步技术有哪两种(数据传输同步技术可以用来验证)

  • 荣耀20pro使用技巧(荣耀20pro使用技巧攻略)

    荣耀20pro使用技巧(荣耀20pro使用技巧攻略)

  • airpods怎么刻字(airpods刻字怎么把它弄掉)

    airpods怎么刻字(airpods刻字怎么把它弄掉)

  • applewatch能放音乐吗(apple watch 放音乐)

    applewatch能放音乐吗(apple watch 放音乐)

  • 小米9快充多少w(小米9快充几瓦)

    小米9快充多少w(小米9快充几瓦)

  • 小米手环4什么时候上市(小米手环4什么时候)

    小米手环4什么时候上市(小米手环4什么时候)

  • 手机怎么传歌到随身听(手机怎么传歌到索尼mp3)

    手机怎么传歌到随身听(手机怎么传歌到索尼mp3)

  • iphonexr使用技巧(iphonexr使用说明视频教程)

    iphonexr使用技巧(iphonexr使用说明视频教程)

  • 怎么拍抖音短视频(怎么拍抖音短视频而且没有杂音)

    怎么拍抖音短视频(怎么拍抖音短视频而且没有杂音)

  • 分期收款企业所得税调整
  • 汽车维修公司做账基本流程
  • 合伙企业需要申报个税吗
  • 固定资产后续支出可以计入哪些费用
  • 计提贷款利息是什么意思
  • 出纳工人借支与贷款区别
  • 委托加工继续生产增值税计入成本吗
  • 退税 增值税
  • 本年利润结转在贷方表示什么意思
  • 电汇凭证如何使用
  • 出口收汇核销单取消了吗
  • 销售现金券会计分录
  • 固定资产盘盈怎么算
  • 周转材料低值易耗品怎么摊销
  • 奖金计提发放会计分录
  • 进口代理公司怎么收费
  • 金税盘当月买当月不抵扣怎么处理?
  • 物业公司税务风险
  • 小规模纳税人免征增值税怎么记账
  • 房地产企业所得税核定征收率
  • 无形资产摊销方法应当反映其经济利益
  • 跨期间收入如何确定当期收入
  • 上月抵扣的进项税这个月怎么做分录
  • 不征收增值税的项目有哪些
  • 主营业务收到的现金
  • 事业单位非税收入怎么做账
  • php初始化会话
  • 自由职业者如何交五险一金
  • os x 10.10 yosemite自动纠正怎么关?os x yosemite自动纠正功能关闭教程
  • 私募股权基金备案流程
  • 软件企业高新技术有哪些
  • 非货币性资产投资计入什么科目
  • 遇到的问题及解决方法
  • php pdo oracle
  • 收到提供劳务的收入
  • php遍历文件夹
  • 马萨诸塞 下架
  • thinkphp常用函数
  • bzip2命令压缩后无法保存原文件
  • 没有交过税怎么办
  • 火车票抵扣进项税需要认证吗
  • 公司间代收代付
  • 小规模申报增值税减免税申报明细表
  • vscode开发gui
  • sql2000错误9003
  • 什么叫总分类账簿
  • 汇算清缴前取得暂估发票
  • 农产品投入产出法怎么计算
  • 漏记以前年度财务费用怎么处理
  • 企业发生装修费就计入长期待摊费用吗还是
  • 公司股东的主要几种分类
  • 公司电子发票报销
  • Linux下安装MySQL5.7.19问题小结
  • win7系统开机蓝屏怎么修复
  • win8.1怎么关闭更新
  • ubuntu software database is broken错误该怎么解决?
  • linux 根目录
  • mac如何备份到icloud
  • linux用户账户管理
  • centos6.6
  • 十个linux命令
  • 常用的加锁方式
  • js时间比较大小的方法
  • shell脚本编程实例
  • json对象转化为list
  • angular ngshow
  • angularjs教程
  • nodejs await
  • java script教程
  • 疯狂android讲义和第一行代码
  • python怎么写函数
  • 怎么用python画图具体步骤
  • android布局有哪些,它们的作用分别是?
  • 消费税抵扣范围包括哪些
  • 青岛市国家税务局官方网站
  • 重庆黄桷垭在什么地方
  • 文山市税务
  • 江西省税务局12366
  • 外经证办理流程在哪个网站申请
  • 书画作品赠送仪式
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设