位置: IT常识 - 正文

人脸口罩检测(含运行代码+数据集)Pytorch+TensorRT+Xavier NX(人脸口罩检测系统)

编辑:rootadmin
人脸口罩检测(含运行代码+数据集)Pytorch+TensorRT+Xavier NX 人脸口罩检测(含运行代码+数据集)

推荐整理分享人脸口罩检测(含运行代码+数据集)Pytorch+TensorRT+Xavier NX(人脸口罩检测系统),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:人脸口罩检测怎么和物理联系起来,人脸口罩检测和红外体温检测智能门禁系统设计,人脸口罩检测和红外体温检测智能门禁系统设计,人脸口罩检测技术发展与应用在社会方面带来的影响,人脸口罩检测和红外体温检测智能门禁系统设计,人脸口罩检测论文,人脸口罩检测实现方法,人脸口罩检测系统,内容如对您有帮助,希望把文章链接给更多的朋友!

本教程目的为让开发者了解深度学习中的完整流程,这包括: 1.数据集导入及预处理流程 2.网络模型选择及参数设置流程 3.模型训练及导出流程 4.模型加载/优化并得出推断结果

项目源码以及数据集下载: https://download.csdn.net/download/kunhe0512/85360655

人脸口罩检测(含运行代码+数据集)Pytorch+TensorRT+Xavier NX(人脸口罩检测系统)

本教程采用了以下主要的软硬件环境: 1.NVIDIA Xavier NX 2.Jetpack 4.6 3.TensorRT 8.0.1 4.Pytorch 1.10.0 5.Python 3.6.9 6.Opencv 4.1.1

实验内容:

本教程的实验内容是利用深度学习的方法,完成口罩检测的任务。检测目标类别为:Background,face,mask,mask_weared_incorrect在实验过程中,采用了OpenImages CVS格式的数据集和SSD-mobilenet的模型。本实验利用Pytorch进行模型训练,将训练好的模型转化为ONNX格式,最后利用TensorRT进行推理更多精彩内容,请扫描下方二维码来加入NVIDIA开发者计划

开始实验1.导入需要的工具库#1import osimport syssys.executableimport loggingimport argparseimport itertoolsimport torchfrom torch.utils.data import DataLoader, ConcatDatasetfrom torch.optim.lr_scheduler import CosineAnnealingLR, MultiStepLRfrom vision.utils.misc import str2bool, Timer, freeze_net_layers, store_labelsfrom vision.ssd.ssd import MatchPriorfrom vision.ssd.vgg_ssd import create_vgg_ssdfrom vision.ssd.mobilenetv1_ssd import create_mobilenetv1_ssdfrom vision.ssd.mobilenetv1_ssd_lite import create_mobilenetv1_ssd_litefrom vision.ssd.mobilenet_v2_ssd_lite import create_mobilenetv2_ssd_litefrom vision.ssd.squeezenet_ssd_lite import create_squeezenet_ssd_litefrom vision.datasets.voc_dataset import VOCDatasetfrom vision.datasets.open_images import OpenImagesDatasetfrom vision.nn.multibox_loss import MultiboxLossfrom vision.ssd.config import vgg_ssd_configfrom vision.ssd.config import mobilenetv1_ssd_configfrom vision.ssd.config import squeezenet_ssd_configfrom vision.ssd.data_preprocessing import TrainAugmentation, TestTransform2.使用GPU完成训练#2DEVICE = torch.device("cuda:0")torch.backends.cudnn.benchmark = True3.设定训练方法#3def train(loader, net, criterion, optimizer, device, debug_steps=100, epoch=-1): net.train(True) running_loss = 0.0 running_regression_loss = 0.0 running_classification_loss = 0.0 for i, data in enumerate(loader): images, boxes, labels = data images = images.to(device) boxes = boxes.to(device) labels = labels.to(device) optimizer.zero_grad() confidence, locations = net(images) regression_loss, classification_loss = criterion(confidence, locations, labels, boxes) # TODO CHANGE BOXES loss = regression_loss + classification_loss loss.backward() optimizer.step() running_loss += loss.item() running_regression_loss += regression_loss.item() running_classification_loss += classification_loss.item() if i and i % debug_steps == 0: avg_loss = running_loss / debug_steps avg_reg_loss = running_regression_loss / debug_steps avg_clf_loss = running_classification_loss / debug_steps print( f"Epoch: {epoch}, Step: {i}/{len(loader)}, " + f"Avg Loss: {avg_loss:.4f}, " + f"Avg Regression Loss {avg_reg_loss:.4f}, " + f"Avg Classification Loss: {avg_clf_loss:.4f}" ) running_loss = 0.0 running_regression_loss = 0.0 running_classification_loss = 0.04.设定测试方法#4def test(loader, net, criterion, device): net.eval() running_loss = 0.0 running_regression_loss = 0.0 running_classification_loss = 0.0 num = 0 for _, data in enumerate(loader): images, boxes, labels = data images = images.to(device) boxes = boxes.to(device) labels = labels.to(device) num += 1 with torch.no_grad(): confidence, locations = net(images) regression_loss, classification_loss = criterion(confidence, locations, labels, boxes) loss = regression_loss + classification_loss running_loss += loss.item() running_regression_loss += regression_loss.item() running_classification_loss += classification_loss.item() return running_loss / num, running_regression_loss / num, running_classification_loss / num5.设定训练参数#5net_name = "mb1-ssd"datasets = []datasets_path = ["data/mask"]model_dir = "models/mask/" voc_or_open_images = "open_images"batch_size = 4num_epochs = 6validation_epochs = 2num_workers = 2lr = 0.01base_net_lr = 0.001extra_layers_lr = 0.01momentum=0.9weight_decay=5e-46.加载数据集

#6timer = Timer()create_net = create_mobilenetv1_ssdconfig = mobilenetv1_ssd_config# create data transforms for train/test/valtrain_transform = TrainAugmentation(config.image_size, config.image_mean, config.image_std)target_transform = MatchPrior(config.priors, config.center_variance, config.size_variance, 0.5)test_transform = TestTransform(config.image_size, config.image_mean, config.image_std)# load datasets (could be multiple)print("Prepare training datasets.")for dataset_path in datasets_path: if voc_or_open_images == 'voc': dataset = VOCDataset(dataset_path, transform=train_transform,target_transform=target_transform) label_file = os.path.join(model_dir, "labels.txt") store_labels(label_file, dataset.class_names) num_classes = len(dataset.class_names) elif voc_or_open_images == 'open_images': dataset = OpenImagesDataset(dataset_path,transform=train_transform, target_transform=target_transform,dataset_type="train", balance_data=False) label_file = os.path.join(model_dir, "labels.txt") store_labels(label_file, dataset.class_names) print(dataset) num_classes = len(dataset.class_names) else: raise ValueError(f"Dataset type is not supported.") datasets.append(dataset)7.将加载好的数据集分割为训练集和验证集#7# create training datasetprint(f"Stored labels into file {label_file}.")train_dataset = ConcatDataset(datasets)print("Train dataset size: {}".format(len(train_dataset)))train_loader = DataLoader(train_dataset, batch_size,num_workers=num_workers,shuffle=True)# create validation dataset print("Prepare Validation datasets.")if voc_or_open_images == "voc": val_dataset = VOCDataset(dataset_path, transform=test_transform,target_transform=target_transform, is_test=True)elif voc_or_open_images == 'open_images': val_dataset = OpenImagesDataset(dataset_path,transform=test_transform, target_transform=target_transform,dataset_type="test") print(val_dataset)print("Validation dataset size: {}".format(len(val_dataset)))val_loader = DataLoader(val_dataset, batch_size,num_workers = num_workers,shuffle=False)8.创建网络模型#8# create the networkprint("Build network.")net = create_net(num_classes)min_loss = -10000.0last_epoch = -1params = [ {'params': net.base_net.parameters(), 'lr': base_net_lr}, {'params': itertools.chain( net.source_layer_add_ons.parameters(), net.extras.parameters() ), 'lr': extra_layers_lr}, {'params': itertools.chain( net.regression_headers.parameters(), net.classification_headers.parameters() )}]9.定义是否使用预训练模型或者我们这里设计了三种模式: 1.重头开始训练,只需将你的模型路径赋值给base_net: base_net = “path/to/the/basic/model” 2.使用之前训练一半中间断开没训练完的模型继续训练,只需将模型路径赋值给resume:resume = “path/to/the/resume/model” 3.利用我们已经准好的预训练模型,只需将模型路径赋值给pretrained_ssd: pretrained_ssd = “path/to/the/pretrained_ssd/model”如果不太明白想选择什么模型,可以将resume,base_net和pretrained_ssd都赋值None,将会自动从头开始训练#9# load a previous model checkpoint (if requested)timer.start("Load Model")resume=Nonebase_net = Nonepretrained_ssd = "models/face-mask-pretrain-model.pth"if resume: print(f"Resume from the model {resume}") net.load(resume)elif base_net: print(f"Init from base net {base_net}") net.init_from_base_net(base_net)elif pretrained_ssd: print(f"Init from pretrained ssd {pretrained_ssd}") net.init_from_pretrained_ssd(pretrained_ssd)print(f'Took {timer.end("Load Model"):.2f} seconds to load the model.')10.开始训练模型#10# move the model to GPUnet.to(DEVICE)# define loss function and optimizercriterion = MultiboxLoss(config.priors, iou_threshold=0.5, neg_pos_ratio=3,center_variance=0.1, size_variance=0.2, device=DEVICE)optimizer = torch.optim.SGD(params, lr=lr, momentum=0.9, weight_decay=weight_decay)print(f"Learning rate: {lr}, Base net learning rate: {base_net_lr}, "+ f"Extra Layers learning rate: {extra_layers_lr}.")# set learning rate policyprint("Uses CosineAnnealingLR scheduler.")scheduler = CosineAnnealingLR(optimizer, 100, last_epoch=last_epoch)# train for the desired number of epochsprint(f"Start training from epoch {last_epoch + 1}.")for epoch in range(last_epoch + 1, num_epochs): scheduler.step() train(train_loader, net, criterion, optimizer,device=DEVICE, debug_steps=10, epoch=epoch) if epoch % validation_epochs == 0 or epoch == num_epochs - 1: val_loss, val_regression_loss, val_classification_loss = test(val_loader, net, criterion, DEVICE) print( f"Epoch: {epoch}, " + f"Validation Loss: {val_loss:.4f}, " + f"Validation Regression Loss {val_regression_loss:.4f}, " + f"Validation Classification Loss: {val_classification_loss:.4f}" ) model_path = os.path.join(model_dir, f"{net_name}-Epoch-{epoch}-Loss-{val_loss}.pth") net.save(model_path) print(f"Saved model {model_path}")print("Task done, exiting program.")11.将训练好的模型转化成ONNX格式#11!python3 onnx_export.py --model-dir=models/mask12.将转化好的ONNX格式利用TensorRT进行优化,生成TensorRT推理引擎

这里注意,需要安装Onnx2TensorRT

#12!onnx2trt models/mask/ssd-mobilenet.onnx -o models/TRT_ssd_mobilenet_v1_face2.bin13.加载引擎推理时所需要的工具库#13import sysimport timeimport argparseimport cv2import pycuda.autoinit import numpy as npfrom utils.ssd_classes import get_cls_dictfrom utils.camera import add_camera_args, Camerafrom utils.display import open_window, set_display, show_fpsfrom utils.visualization import BBoxVisualizationimport ctypesimport tensorrt as trtimport pycuda.driver as cuda14.设计引擎输入输出的预处理方法和后处理方法#14def do_nms(det, boxes, confs, clss): drop = False if len(boxes) <= 0: boxes.append((det[0],det[1],det[2],det[3])) confs.append(det[4]) clss.append(det[5]) return boxes, confs, clss for i in range(0,len(boxes)): bbox = boxes[i] xx1 = np.maximum(det[0], bbox[0]) yy1 = np.maximum(det[1], bbox[1]) xx2 = np.minimum(det[2], bbox[2]) yy2 = np.minimum(det[3], bbox[3]) w = np.maximum(0.0, xx2-xx1+1) h = np.maximum(0.0, yy2-yy1+1) area_det = (det[2]-det[0]+1)*(det[3]-det[1]+1) area_bbox = (bbox[2]-bbox[0]+1)*(bbox[3]-bbox[1]+1) inter = w*h ovr = inter / (area_det + area_bbox - inter) if ovr > 0.6 and not drop: if det[4] > confs[i]: boxes[i] = ((det[0],det[1],det[2],det[3])) confs[i] = det[4] clss[i] = det[5] drop = True if not drop: boxes.append((det[0],det[1],det[2],det[3])) confs.append(det[4]) clss.append(det[5]) return boxes, confs, clssdef _preprocess_trt(img, shape=(300, 300)): """Preprocess an image before TRT SSD inferencing.""" img = cv2.resize(img, shape) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img.transpose((2, 0, 1)).astype(np.float32) img *= (2.0/255.0) img -= 1.0 return imgdef _postprocess_trt(img, output, conf_th, output_layout): """Postprocess TRT SSD output.""" img_h, img_w, _ = img.shape boxes, confs, clss, results = [], [], [],[] #print(((len(output[1]))/4+1)) #print("len(outputs[0]): "+str(len(output[0]))+" len(outputs[1]): "+str(len(output[1]))) for n in range(0, int((len(output[1]))/4)): maxScore = -1000.0000 maxClass = 0 for m in range(0, 4): score = output[0][n*4+m] #print(score) if score < conf_th: continue if m <= 0: continue if( score > maxScore): maxScore = score maxClass = m #if(maxClass < 0): # continue index = int(n) if maxScore < conf_th: continue #print(str(output[1][n*4+0])+" "+str(output[1][n*4+1])+" "+str(output[1][n*4+2])+" "+str(output[1][n*4+3])) x1 = int(output[1][n*4+0] * img_w) y1 = int(output[1][n*4+1] * img_h) x2 = int(output[1][n*4+2] * img_w) y2 = int(output[1][n*4+3] * img_h) det = [x1,y1,x2,y2,maxScore,maxClass,n] boxes, confs, clss = do_nms(det, boxes, confs, clss) return boxes, confs, clss15.定义SSD-mobilenet v1模型的推理引擎的加载当我们已经优化好了引擎的时候,我们可以将优化好的引擎以文件的形式写到硬盘上,我们称之为序列化文件(serialized file)或PLAN文件我们下次想直接使用优化好的引擎的时候,我们可以通过读取硬盘上的序列化文件,并利用 deserialize_cuda_engine() 方法进行反序列化,生成可执行的引擎利用序列化文件生成可执行引擎可以为我们节省大量的时间不同平台(软件或硬件平台)上生成的引擎的序列化文件不能直接通用,相同平台(软件且硬件平台)或同一台设备上生成的引擎序列化文件可以直接用#15class TrtSSD(object): """TrtSSD class encapsulates things needed to run TRT SSD.""" #加载自定义组建,这里如果TensorRT版本小于7.0需要额外生成flattenconcat的自定义组件库 def _load_plugins(self): trt.init_libnvinfer_plugins(self.trt_logger, '') #加载通过Transfer Learning Toolkit生成的推理引擎 def _load_engine(self): TRTbin = 'models/TRT_%s.bin' % self.model with open(TRTbin, 'rb') as f, trt.Runtime(self.trt_logger) as runtime: return runtime.deserialize_cuda_engine(f.read()) #通过加载的引擎,生成可执行的上下文 def _create_context(self): for binding in self.engine: size = trt.volume(self.engine.get_binding_shape(binding)) * \ self.engine.max_batch_size ##注意:这里的host_mem需要时用pagelocked memory,以免内存被释放 host_mem = cuda.pagelocked_empty(size, np.float32) cuda_mem = cuda.mem_alloc(host_mem.nbytes) self.bindings.append(int(cuda_mem)) if self.engine.binding_is_input(binding): self.host_inputs.append(host_mem) self.cuda_inputs.append(cuda_mem) else: self.host_outputs.append(host_mem) self.cuda_outputs.append(cuda_mem) return self.engine.create_execution_context() #初始化引擎 def __init__(self, model, input_shape, output_layout=7): """Initialize TensorRT plugins, engine and conetxt.""" self.model = model self.input_shape = input_shape self.output_layout = output_layout self.trt_logger = trt.Logger(trt.Logger.INFO) self._load_plugins() self.engine = self._load_engine() self.host_inputs = [] self.cuda_inputs = [] self.host_outputs = [] self.cuda_outputs = [] self.bindings = [] self.stream = cuda.Stream() self.context = self._create_context() #释放引擎,释放GPU显存,释放CUDA流 def __del__(self): """Free CUDA memories.""" del self.stream del self.cuda_outputs del self.cuda_inputs #利用生成的可执行上下文执行推理 def detect(self, img, conf_th=0.3): """Detect objects in the input image.""" img_resized = _preprocess_trt(img, self.input_shape) np.copyto(self.host_inputs[0], img_resized.ravel()) #将处理好的图片从CPU内存中复制到GPU显存 cuda.memcpy_htod_async( self.cuda_inputs[0], self.host_inputs[0], self.stream) #开始执行推理任务 self.context.execute_async( batch_size=1, bindings=self.bindings, stream_handle=self.stream.handle) #将推理结果输出从GPU显存复制到CPU内存 cuda.memcpy_dtoh_async( self.host_outputs[1], self.cuda_outputs[1], self.stream) cuda.memcpy_dtoh_async( self.host_outputs[0], self.cuda_outputs[0], self.stream) self.stream.synchronize() output = self.host_outputs #print("len(outputs[0]): "+str(len(self.host_outputs[0]))+" len(outputs[1]): "+str(len(self.host_outputs[1]))) #for x in self.host_outputs[0]: # print(str(x),end=' ') #for x in self.host_outputs[1]: # print(str(x),end=' ') return _postprocess_trt(img, output, conf_th, self.output_layout)16.设置模型库1.这里定义了多个模型库,我们选用的是人脸口罩检测,也就是最后一个ssd_mobilenet_v1_face22.这里还定义了我们模型的输入(300,300)#16INPUT_HW = (300, 300)SUPPORTED_MODELS = [ 'ssd_mobilenet_v1_coco', 'ssd_mobilenet_v1_egohands', 'ssd_mobilenet_v2_coco', 'ssd_mobilenet_v2_egohands', 'ssd_mobilenet_v2_face', 'ssd_resnet18_5th', 'ssd_mobilenet_v1_face2', 'ssd_mobilenet_v1_fruit']17.开始定义方法来读取数据并将输出可视化的画到图像上detect_one()方法是检测单张图片,detect_video()方法是检测视频注意:这里打印的fps值是包括将图像写到结果视频中的时间,如果取消将视频写到结果视频的功能,速度会有大幅度提升#17-1def detect_video(video, trt_ssd, conf_th, vis,result_file_name): full_scrn = False fps = 0.0 tic = time.time() frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = video.get(cv2.CAP_PROP_FPS) #print(str(frame_width)+str(frame_height)) ##定义输入编码 fourcc = cv2.VideoWriter_fourcc('M', 'P', '4', 'V') videoWriter = cv2.VideoWriter('result.AVI', fourcc, fps, (frame_width,frame_height)) ##开始循环检测,并将结果写到result.mp4中 while True: ret,img = video.read() if img is not None: boxes, confs, clss = trt_ssd.detect(img, conf_th) #print("boxes,confs,clss: "+ str(boxes)+" "+ str(confs)+" "+str(clss)) img = vis.draw_bboxes(img, boxes, confs, clss) videoWriter.write(img) toc = time.time() curr_fps = 1.0 / (toc - tic) fps = curr_fps if fps == 0.0 else (fps*0.95 + curr_fps*0.05) tic = toc print("\rfps: "+str(fps),end="") else: break#17-2def detect_one(img, trt_ssd, conf_th, vis): full_scrn = False tic = time.clock() ##开始检测,并将结果写到result.jpg中 boxes, confs, clss = trt_ssd.detect(img, conf_th) toc = time.clock() curr_fps = (toc - tic) #print("boxes: "+str(boxes)) #print("clss: "+str(clss)) #print("confs: "+str(confs)) img = vis.draw_bboxes(img, boxes, confs, clss) cv2.imwrite("result.jpg",img) print("time: "+str(curr_fps)+"(sec)")18.定义main()函数,检测单张图片**您可以自行上传图像到当前文件夹,并将filename请改成您要测试的图片的名字face指的是没有戴口罩的人脸,face_mask指的是带了口罩的人脸,mask_weared_incorrect指的是带了口罩但是带的不规范的人脸#18-1def main_one(): filename = "mask.jpg" result_file_name = str(filename) img = cv2.imread(filename) cls_dict = get_cls_dict("ssd_mobilenet_v1_face2".split('_')[-1]) model_name ="ssd_mobilenet_v1_face2" trt_ssd = TrtSSD(model_name, INPUT_HW) vis = BBoxVisualization(cls_dict) print("start detection!") detect_one(img, trt_ssd, conf_th=0.5, vis=vis) cv2.destroyAllWindows() print("finish!")#18-2from IPython.display import Imagemain_one()Image("result.jpg")

19.定义main()函数,检测视频您可以自行上传视频到当前文件夹,并将filename请改成您要测试的视频的名字检测视频部分由于要将检测的结果写到硬盘上,所以时间会加倍,如果要得到和单张检测相似的数据,可以将读写的语句注释掉face指的是没有戴口罩的人脸,face_mask指的是带了口罩的人脸,mask_weared_incorrect指的是带了口罩但是带的不规范的人脸)#19-1def main_loop(): filename = "face_mask_test_video.mp4" result_file_name = str(filename) video = cv2.VideoCapture(filename) cls_dict = get_cls_dict("ssd_mobilenet_v1_face2".split('_')[-1]) model_name ="ssd_mobilenet_v1_face2" trt_ssd = TrtSSD(model_name, INPUT_HW) vis = BBoxVisualization(cls_dict) print("start detection!") detect_video(video, trt_ssd, conf_th=0.8, vis=vis, result_file_name=result_file_name) video.release() cv2.destroyAllWindows() print("\nfinish!")#19-2main_loop()20.将生成的视频转码,以便能够在Jupyter Notebook中查看这里采用的是利用GPU加速的转码技术,将输出的视频转换到MP4格式,比单纯使用CPU进行转码的速度有大幅度提升#20!rm result-ffmpeg4.mp4!ffmpeg -i result.AVI -vcodec libx264 -f mp4 result-ffmpeg4.mp4 21.查看结果视频#21from IPython.display import VideoVideo("result-ffmpeg4.mp4")
本文链接地址:https://www.jiuchutong.com/zhishi/299726.html 转载请保留说明!

上一篇:ChatGPT探索系列之二:学习GPT模型系列的发展历程和原理(探索app下载)

下一篇:js添加元素的方式(js添加方法)

  • 新办营利性医疗机构是否免征土地使用税和房产税?
  • 资产负债表与利润表的区别
  • 小规模附加税减半征收吗
  • 申报作废了还能修改吗
  • 收到税务局附加税退税税款的分录
  • 工会经费计税基数包含支付职工的辞退福利
  • 一般纳税人所得税是季报还是月报
  • 发生销货退回需要退回发票么
  • 坏账冲回要纳税调减吗
  • 预付账款余额怎么算
  • 企业外购的无形资产摊销,可以加计扣除吗?
  • 建筑业发票可以在备注里加备注么
  • 营改增后房地产企业增值税如何核算
  • 不动产发票如何开具
  • 同一个行政区
  • 试运营和正式运营间隔
  • 开发票与实际金额不符属于什么
  • 增值税进项税额转出的账务处理
  • 诉讼费和保全费什么时候能退还
  • 购买土地建厂房还要交土地使用费吗
  • 控制上网速度的软件
  • 预付账款为负数能转为应付账款吗
  • 为什么WIN10系统打在画面进不去
  • php的工作流程
  • 最早的拍照手机是哪一年
  • php函数式编程
  • echarts引入地图
  • php验证码识别
  • 用python编写
  • 车辆购置税发票图片
  • php对称加密算法
  • 如何查询发票领到几月份了
  • 装修公司管理费是什么
  • 待抵扣进项税额是什么情况下用的
  • 其他机械和设备修理业包括哪些
  • 月末损益结转手工结转步骤
  • 进项税额已抵扣转出会计分录
  • 油票上没有公司名称可以报么
  • Linux下MySQL数据库的主从同步复制配置
  • sql server中数据文件的扩展名是
  • python 逻辑取反
  • 印花税减半征收政策什么时候开始的
  • 会计凭证大小写不一致
  • 什么叫网银盾账户
  • 公户直接转给私人账户违法么
  • 发票丢失一张罚款标准
  • 小规模未达到起征点申报表怎么填
  • 销售成本会计英语
  • 可转换公司债券名词解释
  • 建筑企业收到发票未付款怎么做账
  • 转账手续费没有发票能税前扣除吗
  • 收据能不能入账账户
  • 挂靠被查出来后挂靠费怎么处理?
  • 企业会计做账教程
  • 新准则房地产企业收入确认时间
  • sql server索引怎么用
  • MySQL数据库卸载了数据还有吗?
  • sqlserver 触发器 if 后边没执行
  • win8 恢复
  • xp系统net framework 3.5
  • vmware 10虚拟机
  • nw.exe是什么进程
  • win10系统更新后无法开机
  • win7系统出现问题怎么修复
  • cocos2d安装
  • 铁嘴的故事
  • 局域网扫描器
  • Bullet(Cocos2dx)之增加调试绘制PhysicsDraw3D
  • unity3d官方教程
  • javascript用户名验证
  • scrollview嵌套flatlist
  • 全面解析俄乌武器对比
  • jquery的理解
  • 芜湖买房退契税在哪里退
  • uk在哪里看开票截止日期
  • 南通买房首付规定
  • 青海税务发票查询
  • 人人财富最新消息
  • 12366几点上班人工服务
  • 酒店退房不到退房时间
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设