位置: IT常识 - 正文
推荐整理分享[九]深度学习Pytorch-transforms图像增强(剪裁、翻转、旋转),希望有所帮助,仅作参考,欢迎阅读内容。
文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!
[一]深度学习Pytorch-张量定义与张量创建
[二]深度学习Pytorch-张量的操作:拼接、切分、索引和变换
[三]深度学习Pytorch-张量数学运算
[四]深度学习Pytorch-线性回归
[五]深度学习Pytorch-计算图与动态图机制
[六]深度学习Pytorch-autograd与逻辑回归
[七]深度学习Pytorch-DataLoader与Dataset(含人民币二分类实战)
[八]深度学习Pytorch-图像预处理transforms
[九]深度学习Pytorch-transforms图像增强(剪裁、翻转、旋转)
[十]深度学习Pytorch-transforms图像操作及自定义方法
深度学习Pytorch-transforms图像增强0. 往期内容1. 数据增强2. 剪裁2.1 transforms.CenterCrop(size)2.2 transforms.RandomCrop(size, fill=0, padding_mode='constant')2.3 transforms.RandomResizedCrop(size, scale=(0.08, 1.0), ratio=(3/4, 4/3), interpolation)2.4 transforms.FiveCrop(size)2.5 transforms.TenCrop(size, vertical_flip=False)3. 旋转3.1 transforms.RandomHorizontalFlip(p=0.5)3.2 transforms.RandomVerticalFlip(p=0.5)3.3 transforms.RandomRotation(degrees, expand=False, center=None, fill=0, resample=None)4. 完整代码示例1. 数据增强2. 剪裁2.1 transforms.CenterCrop(size)transforms.CenterCrop(size)
(1)功能:从图像中心裁剪尺寸为size的图片; (2)参数: size: 若为int,则尺寸为size*size; 若为(h,w),则尺寸为h*w. (3)代码示例:
train_transform = transforms.Compose([ transforms.Resize((224, 224)), #图片统一缩放到244*244 # 1 CenterCrop transforms.CenterCrop(196), # 裁剪为196*196,如果是512的话,超出244的区域填充为黑色 transforms.ToTensor(), transforms.Normalize(norm_mean, norm_std),])2.2 transforms.RandomCrop(size, fill=0, padding_mode=‘constant’)transforms.RandomCrop(size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant')(1)功能:对图像随机裁剪出尺寸为size的图片; (2)参数: size: 若为int,则尺寸为size*size; 若为(h,w),则尺寸为h*w; padding: 设置填充大小: I. 当padding为a时,左右上下均填充a个像素; II. 当padding为(a,b)时,左右填充a个像素,上下填充b个像素; III. 当padding为(a,b,c,d)时,左、上、右、下分别填充a、b、c、d; pad_if_need:若设定的size大于原图像尺寸,则填充; padding_mode:填充模式,有4种模式: I. constant:像素值由fill设定; II. edge:像素值由图像边缘的像素值决定; III. reflect:镜像填充,最后一个像素不镜像,eg. [1,2,3,4] --> [3,2,1,2,3,4,3,2]; 向左:由于1不会镜像,所以左边镜像2、3; 向右:由于4不会镜像,所以右边镜像3、2;
IV. symmetric:镜像填充,最后一个像素镜像,eg. [1,2,3,4] --> [2,1,1,2,3,4,4,3]; 向左:1、2镜像; 向右:4、3镜像;
fill:当padding_mode='constant'时,用于设置填充的像素值;
(3)代码示例:
train_transform = transforms.Compose([ transforms.Resize((224, 224)), #图片统一缩放到244*244 # 2 RandomCrop transforms.RandomCrop(224, padding=16), transforms.RandomCrop(224, padding=(16, 64)), transforms.RandomCrop(224, padding=16, fill=(255, 0, 0)), #fill=(255, 0, 0)RGB颜色 #当size大于图片尺寸,即512大于244,pad_if_needed必须设置为True,否则会报错,其他区域会填充黑色(0,0,0) transforms.RandomCrop(512, pad_if_needed=True), # pad_if_needed=True transforms.RandomCrop(224, padding=64, padding_mode='edge'), #边缘 transforms.RandomCrop(224, padding=64, padding_mode='reflect'), #镜像 transforms.RandomCrop(1024, padding=1024, padding_mode='symmetric'), #镜像 transforms.ToTensor(), transforms.Normalize(norm_mean, norm_std),])2.3 transforms.RandomResizedCrop(size, scale=(0.08, 1.0), ratio=(3/4, 4/3), interpolation)transforms.RandomResizedCrop(size, scale=(0.08, 1.0), ratio=(3/4, 4/3), interpolation=<InterpolationMode.BILINEAR: 'bilinear'>)(1)功能:随机大小、随机长宽比裁剪图片; (2)参数: size: 裁剪图片尺寸,若为int,则尺寸为size*size; 若为(h,w),则尺寸为h*w,size是最后图片的尺寸; scale: 随机裁剪面积比例,默认区间(0.08,1),scale默认是随机选取0.08-1之间的一个数 ratio: 随机长宽比,默认区间(3/4,4/3),ratio默认是随机选取3/4-4/3之间的一个数 interpolation: 插值方法,eg. PIL. Image. NEAREST, PIL. Image. BILINEAR, PIL. Image. BICUBIC; (3)步骤: 随机确定scale和ratio,然后对原始图片进行选取,再将选取的片段缩放到size大小; (4)代码示例:
train_transform = transforms.Compose([ transforms.Resize((224, 224)), #图片统一缩放到244*244 # 3 RandomResizedCrop transforms.RandomResizedCrop(size=224, scale=(0.5, 0.5)), transforms.ToTensor(), transforms.Normalize(norm_mean, norm_std),])2.4 transforms.FiveCrop(size)transforms.FiveCrop(size)(1)功能:在图像的左上、右上、左下、右下、中心随机剪裁出尺寸为size的5张图片; (2)参数: size: 裁剪图片尺寸,若为int,则尺寸为size*size; 若为(h,w),则尺寸为h*w; (3)代码示例:
train_transform = transforms.Compose([ transforms.Resize((224, 224)), #图片统一缩放到244*244 # 4 FiveCrop transforms.FiveCrop(112), #单独使用错误,直接使用transforms.FiveCrop(112)会报错,需要跟下一行一起使用 #lamda的冒号之前是函数的输入(crops),冒号之后是函数的返回值 transforms.Lambda(lambda crops: torch.stack([(transforms.ToTensor()(crop)) for crop in crops])), #这里进行了ToTensor(),后面不需要执行Totensor()和Normalize,第114-115行])使用FiveCrop时需要使用五维可视化,这是因为inputs为五维(batch_size*ncrops*chanel*图像宽*图像高),代码如下:
for epoch in range(MAX_EPOCH): for i, data in enumerate(train_loader): inputs, labels = data #五维可视化 #使用FiveCrop时inputs为五维:batch_size*ncrops*chanel*图像宽*图像高,此时ncrops=5 bs, ncrops, c, h, w = inputs.shape for n in range(ncrops): img_tensor = inputs[0, n, ...] # C H W img = transform_invert(img_tensor, train_transform) plt.imshow(img) plt.show() plt.pause(1)2.5 transforms.TenCrop(size, vertical_flip=False)transforms.TenCrop(size, vertical_flip=False)(1)功能:在图像的左上、右上、左下、右下、中心随机剪裁出尺寸为size的5张图片,然后再对这5张照片进行水平或者垂直镜像来获得总共10张图片; (2)参数: size: 裁剪图片尺寸,若为int,则尺寸为size*size; 若为(h,w),则尺寸为h*w; vertical_flip: 是否垂直翻转,默认为False代表进行水平翻转; (3)代码示例:
train_transform = transforms.Compose([ transforms.Resize((224, 224)), #图片统一缩放到244*244 # 5 TenCrop transforms.TenCrop(112, vertical_flip=False), #lamda的冒号之前是函数的输入(crops),冒号之后是函数的返回值 transforms.Lambda(lambda crops: torch.stack([(transforms.ToTensor()(crop)) for crop in crops])),])使用TenCrop时需要使用五维可视化,这是因为inputs为五维(batch_size*ncrops*chanel*图像宽*图像高),代码如下:
for epoch in range(MAX_EPOCH): for i, data in enumerate(train_loader): inputs, labels = data #五维可视化 #使用FiveCrop时inputs为五维:batch_size*ncrops*chanel*图像宽*图像高,此时ncrops=5 bs, ncrops, c, h, w = inputs.shape for n in range(ncrops): img_tensor = inputs[0, n, ...] # C H W img = transform_invert(img_tensor, train_transform) plt.imshow(img) plt.show() plt.pause(1)3. 旋转3.1 transforms.RandomHorizontalFlip(p=0.5)transforms.RandomHorizontalFlip(p=0.5)(1)功能:根据概率对图片进行水平(左右)翻转,每次根据概率来决定是否执行翻转; (2)参数: p: 反转概率; (3)代码示例:
train_transform = transforms.Compose([ transforms.Resize((224, 224)), #图片统一缩放到244*244 # 1 Horizontal Flip transforms.RandomHorizontalFlip(p=1), #执行水平翻转的概率为1 transforms.ToTensor(), transforms.Normalize(norm_mean, norm_std),])3.2 transforms.RandomVerticalFlip(p=0.5)transforms.RandomVerticalFlip(p=0.5)(1)功能:根据概率对图片进行垂直(上下)翻转,每次根据概率来决定是否执行翻转; (2)参数: p: 反转概率; (3)代码示例:
train_transform = transforms.Compose([ transforms.Resize((224, 224)), #图片统一缩放到244*244 # 2 Vertical Flip transforms.RandomVerticalFlip(p=0.5), #执行垂直翻转的概率为0.5 transforms.ToTensor(), transforms.Normalize(norm_mean, norm_std),])3.3 transforms.RandomRotation(degrees, expand=False, center=None, fill=0, resample=None)transforms.RandomRotation(degrees, expand=False, center=None, fill=0, resample=None)(1)功能:对图片旋转随机的角度; (2)参数: degrees: 旋转角度; I. 当degrees为a时,在区间(-a,a)之间随机选择旋转角度; II. 当degrees为(a,b)时,在区间(a,b)之间随机选择旋转角度; resample: 重采样方法; expand: 是否扩大图片以保持原图信息,因为旋转后可能有些信息被遮挡了而丢失,如果扩大尺寸则可以显示完整图片信息; center: 旋转点设置,默认沿着中心旋转; (3)代码示例:
train_transform = transforms.Compose([ transforms.Resize((224, 224)), #图片统一缩放到244*244 # 3 RandomRotation transforms.RandomRotation(90), transforms.RandomRotation((90), expand=True), #当batch_size不为1时,expand使用时,张量在第0个维度尺寸需要匹配,需要对图片缩放到统一的size transforms.RandomRotation(30, center=(0, 0)), #左上角旋转 transforms.RandomRotation(30, center=(0, 0), expand=True), #expand只可以针对中心旋转来扩展,无法用于左上角旋转来找回丢失的信息 transforms.ToTensor(), transforms.Normalize(norm_mean, norm_std),])4. 完整代码示例# -*- coding: utf-8 -*-"""# @file name : transforms_methods_1.py# @author : tingsongyu# @date : 2019-09-11 10:08:00# @brief : transforms方法(一)"""import osimport numpy as npimport torchimport randomfrom torch.utils.data import DataLoaderimport torchvision.transforms as transformsfrom tools.my_dataset import RMBDatasetfrom PIL import Imagefrom matplotlib import pyplot as pltdef set_seed(seed=1): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed)set_seed(1) # 设置随机种子# 参数设置MAX_EPOCH = 10BATCH_SIZE = 1LR = 0.01log_interval = 10val_interval = 1rmb_label = {"1": 0, "100": 1}def transform_invert(img_, transform_train): """ 将data 进行反transfrom操作 :param img_: tensor :param transform_train: torchvision.transforms :return: PIL image """ if 'Normalize' in str(transform_train): norm_transform = list(filter(lambda x: isinstance(x, transforms.Normalize), transform_train.transforms)) mean = torch.tensor(norm_transform[0].mean, dtype=img_.dtype, device=img_.device) std = torch.tensor(norm_transform[0].std, dtype=img_.dtype, device=img_.device) img_.mul_(std[:, None, None]).add_(mean[:, None, None]) #normalize是减去均值除以标准差,反操作就是乘以标准差加上均值 img_ = img_.transpose(0, 2).transpose(0, 1) # C*H*W --> H*W*C 通道变换 img_ = np.array(img_) * 255 #将0-1转换为0-255 #针对chanel是三通道还是一通道分别转换 if img_.shape[2] == 3: #RGB图像 img_ = Image.fromarray(img_.astype('uint8')).convert('RGB') #将ndarray数据转换为image elif img_.shape[2] == 1: #灰度图像 img_ = Image.fromarray(img_.astype('uint8').squeeze()) else: raise Exception("Invalid img shape, expected 1 or 3 in axis 2, but got {}!".format(img_.shape[2]) ) return img_# ============================ step 1/5 数据 ============================split_dir = os.path.join("..", "..", "data", "rmb_split")train_dir = os.path.join(split_dir, "train")valid_dir = os.path.join(split_dir, "valid")norm_mean = [0.485, 0.456, 0.406]norm_std = [0.229, 0.224, 0.225]train_transform = transforms.Compose([ transforms.Resize((224, 224)), #图片统一缩放到244*244 # 1 CenterCrop # transforms.CenterCrop(196), # 裁剪为196*196,如果是512的话,超出244的区域填充为黑色 # 2 RandomCrop # transforms.RandomCrop(224, padding=16), # transforms.RandomCrop(224, padding=(16, 64)), # transforms.RandomCrop(224, padding=16, fill=(255, 0, 0)), #fill=(255, 0, 0)RGB颜色 #当size大于图片尺寸,即512大于244,pad_if_needed必须设置为True,否则会报错,其他区域会填充黑色(0,0,0) # transforms.RandomCrop(512, pad_if_needed=True), # pad_if_needed=True # transforms.RandomCrop(224, padding=64, padding_mode='edge'), #边缘 # transforms.RandomCrop(224, padding=64, padding_mode='reflect'), #镜像 # transforms.RandomCrop(1024, padding=1024, padding_mode='symmetric'), #镜像 # 3 RandomResizedCrop # transforms.RandomResizedCrop(size=224, scale=(0.5, 0.5)), # 4 FiveCrop # transforms.FiveCrop(112), #单独使用错误,直接使用transforms.FiveCrop(112)会报错,需要跟下一行一起使用 #lamda的冒号之前是函数的输入(crops),冒号之后是函数的返回值 # transforms.Lambda(lambda crops: torch.stack([(transforms.ToTensor()(crop)) for crop in crops])), #这里进行了ToTensor(),后面不需要执行Totensor()和Normalize,第114-115行 # 5 TenCrop # transforms.TenCrop(112, vertical_flip=False), # transforms.Lambda(lambda crops: torch.stack([(transforms.ToTensor()(crop)) for crop in crops])), # 1 Horizontal Flip # transforms.RandomHorizontalFlip(p=1), #执行水平翻转的概率为1 # 2 Vertical Flip # transforms.RandomVerticalFlip(p=0.5), #执行垂直翻转的概率为0.5 # 3 RandomRotation # transforms.RandomRotation(90), # transforms.RandomRotation((90), expand=True), #当batch_size不为1时,expand使用时,张量在第0个维度尺寸需要匹配,需要对图片缩放到统一的size # transforms.RandomRotation(30, center=(0, 0)), #左上角旋转 # transforms.RandomRotation(30, center=(0, 0), expand=True), #expand只可以针对中心旋转来扩展,无法用于左上角旋转来找回丢失的信息 #若使用FiveCrop或TenCrop,以下两行需要注释掉 transforms.ToTensor(), transforms.Normalize(norm_mean, norm_std),])valid_transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(norm_mean, norm_std)])# 构建MyDataset实例train_data = RMBDataset(data_dir=train_dir, transform=train_transform)valid_data = RMBDataset(data_dir=valid_dir, transform=valid_transform)# 构建DataLodertrain_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)valid_loader = DataLoader(dataset=valid_data, batch_size=BATCH_SIZE)# ============================ step 5/5 训练 ============================for epoch in range(MAX_EPOCH): for i, data in enumerate(train_loader): inputs, labels = data #四维可视化 #input的大小为四维:batch_size*chanel*图像宽*图像高 # B C H W img_tensor = inputs[0, ...] # C H W img = transform_invert(img_tensor, train_transform) #对transform进行逆变换,可视化图片 plt.imshow(img) plt.show() plt.pause(0.5) plt.close() #五维可视化 #使用FiveCrop时inputs为五维:batch_size*ncrops*chanel*图像宽*图像高,此时ncrops=5 bs, ncrops, c, h, w = inputs.shape # for n in range(ncrops): # img_tensor = inputs[0, n, ...] # C H W # img = transform_invert(img_tensor, train_transform) # plt.imshow(img) # plt.show() # plt.pause(1)上一篇:C#,图像二值化(01)——二值化算法综述与二十三种算法目录(c++图像二值化)
下一篇:Vue全局组件和局部组件的注册(vue全局组件和局部组件)
友情链接: 武汉网站建设