位置: IT常识 - 正文

YOLOv5的head详解(yolov5 output)

编辑:rootadmin
YOLOv5的head详解

推荐整理分享YOLOv5的head详解(yolov5 output),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:yolov5讲解,yolov5的使用,yolov5 output,yolov5 result,yolov5实现,yolov5修改head,yolo head,yolov4 head,内容如对您有帮助,希望把文章链接给更多的朋友!

YOLOv5的head详解

在前两篇文章中我们对YOLO的backbone和neck进行了详尽的解读,如果有小伙伴没看这里贴一下传送门: YOLOv5的Backbone设计 YOLOv5的Neck端设计 在这篇文章中,我们将针对YOLOv5的head进行解读,head虽然在网络中占比最少,但这却是YOLO最核心的内容,话不多说,进入正题。

1 YOLOv5s网络结构总览

要了解head,就不能将其与前两部分割裂开。head中的主体部分就是三个Detect检测器,即利用基于网格的anchor在不同尺度的特征图上进行目标检测的过程。由下面的网络结构图可以很清楚的看出:当输入为640*640时,三个尺度上的特征图分别为:80x80、40x40、20x20。现在问题的关键变为,Detect的过程细节是怎样的?如何在多个检测框中选择效果最好的?

2 YOLO核心:Detect

首先看一下yolo中Detect的源码组成:

class Detect(nn.Module): stride = None # strides computed during build onnx_dynamic = False # ONNX export parameter def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer super().__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.zeros(1)] * self.nl # init grid self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2) self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv self.inplace = inplace # use in-place ops (e.g. slice assignment) def forward(self, x): z = [] # inference output for i in range(self.nl): x[i] = self.m[i](x[i]) # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic: self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) y = x[i].sigmoid() if self.inplace: y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh y = torch.cat((xy, wh, y[..., 4:]), -1) z.append(y.view(bs, -1, self.no)) return x if self.training else (torch.cat(z, 1), x) def _make_grid(self, nx=20, ny=20, i=0): d = self.anchors[i].device yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)]) grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float() anchor_grid = (self.anchors[i].clone() * self.stride[i]) \ .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float() return grid, anchor_gridYOLOv5的head详解(yolov5 output)

Detect很重要,但是内容不多,那我们就将其解剖开来,一部分一部分地看。

2.1 initial部分 def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer super().__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.zeros(1)] * self.nl # init grid self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2) self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv self.inplace = inplace # use in-place ops (e.g. slice assignment) self.anchor=anchors

initial部分定义了Detect过程中的重要参数 1. nc:类别数目 2. no:每个anchor的输出,包含类别数nc+置信度1+xywh4,故nc+5 3. nl:检测器的个数。以上图为例,我们有3个不同尺度上的检测器:[[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]],故检测器个数为3。 4. na:每个检测器中anchor的数量,个数为3。由于anchor是w h连续排列的,所以需要被2整除。 5. grid:检测器Detect的初始网格 6. anchor_grid:anchor的初始网格 7. m:每个检测器的最终输出,即检测器中anchor的输出no×anchor的个数nl。打印出来很好理解(60是因为我的数据集nc为15,coco是80):

ModuleList( (0): Conv2d(128, 60, kernel_size=(1, 1), stride=(1, 1)) (1): Conv2d(256, 60, kernel_size=(1, 1), stride=(1, 1)) (2): Conv2d(512, 60, kernel_size=(1, 1), stride=(1, 1)))2.2 forward def forward(self, x): z = [] # inference output for i in range(self.nl): x[i] = self.m[i](x[i]) # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic: self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) y = x[i].sigmoid() if self.inplace: y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh y = torch.cat((xy, wh, y[..., 4:]), -1) z.append(y.view(bs, -1, self.no)) return x if self.training else (torch.cat(z, 1), x)

在forward操作中,网络接收3个不同尺度的特征图,如下图所示:

for i in range(self.nl): x[i] = self.m[i](x[i]) # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

网络的for loop次数为3,也就是依次在这3个特征图上进行网格化预测,利用卷积操作得到通道数为no×nl的特征输出。拿128x80x80举例,在nc=15的情况下经过卷积得到60x80x80的特征图,这个特征图就是后续用于格点检测的特征图。

if not self.training: # inference if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic: self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) def _make_grid(self, nx=20, ny=20, i=0): d = self.anchors[i].device yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)]) grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float() anchor_grid = (self.anchors[i].clone() * self.stride[i]) \ .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float() return grid, anchor_grid

随后就是基于经过检测器卷积后的特征图划分网格,网格的尺寸是与输入尺寸相同的,如20x20的特征图会变成20x20的网格,那么一个网格对应到原图中就是32x32像素;40x40的一个网格就会对应到原图的16x16像素,以此类推。

y = x[i].sigmoid() if self.inplace: y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh y = torch.cat((xy, wh, y[..., 4:]), -1) z.append(y.view(bs, -1, self.no))

这里其实就是预测偏移的主体部分了。

y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy

这一句是对x和y进行预测。x、y在输入网络前都是已经归一好的(0,1),乘以2再减去0.5就是(-0.5,1.5),也就是让x、y的预测能够跨网格进行。后边self.grid[i]) * self.stride[i]就是将相对位置转为网格中的绝对位置了。

y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh

这里对宽和高进行预测,没啥好说的。

z.append(y.view(bs, -1, self.no))

最后将结果填入z

本文链接地址:https://www.jiuchutong.com/zhishi/299952.html 转载请保留说明!

上一篇:Vite4+Pinia2+vue-router4+ElmentPlus搭建Vue3项目(组件、图标等按需引入)[保姆级]

下一篇:gdal概览(gdal官方文档)

  • 使用增值税发票的条件
  • 企业取得房租收据怎么写
  • 发票可不可以部分冲红
  • 农民工工资保证金管理暂行办法
  • 怎么知道购货方电话号码
  • 会计凭证可分为哪三类
  • 进项抵扣怎么操作
  • 以前的固定资产现在做账怎么入账
  • 3%征收率的应税服务
  • 新企业所得税法规定的企业包括
  • 固定资产清理销项税
  • 实际利率法怎么理解
  • 建筑材料营改增之前怎么开发票
  • 支付保洁费用
  • 税务师如何办理入会
  • 合同成本如何设一级科目
  • 主体有哪些
  • 应付账款暂估借方余额怎么处理
  • win11版本22000.194
  • 电脑装机光盘
  • windows7中
  • 商标注册费用
  • php 链式调用
  • 员工的出差补贴计入什么科目
  • 电脑启用aero
  • win11自动更新卡在94%
  • vue 高德地图 窗体
  • PHP:apache_get_version()的用法_Apache函数
  • win10点搜索
  • 诉讼费属于什么科目类别
  • nvm安装及全局配置node
  • 个体工商户需要报哪些税
  • laravel注入
  • 购买股票的佣金计入
  • vscode简单入门
  • php ascii
  • video.js教程
  • php获取文本内容
  • php调用变量的符号
  • vue清空input file的值
  • js获取本机ip地址
  • 20分钟,使用Amazon SageMaker快速搭建属于自己的AIGC应用
  • yolo目标识别
  • 增值税发票超过3个月可以作废吗
  • dedecms手册
  • dedecms采集怎么用
  • 财务费用的科目类别是什么
  • mysql怎么恢复数据
  • 享受残疾人增值服务的是
  • 安全生产费用应当专户储存专款专用专户核算
  • 少数股东权益如何保障
  • 油卡充值做账
  • 委托加工业务的财务职责
  • 企业支付境外佣金要交税吗?
  • 发现以前的账做错了
  • 没有关联企业怎么选不了否
  • 资本公积金什么时候提取
  • 废品损失的计算方法及废品损失的范围
  • SQL2005、SQL2008允许远程连接的配置说明(附配置图)
  • sql多表连接查询(详细实例)
  • mysql导出查询结果sql
  • 无线网络连接不上显示无ip分配
  • linux nc命令详解
  • windows10如何多选文件
  • windowsxpsp3是什么版
  • win7系统打开java的控制面板的方法
  • unity自动门
  • 卡带测评
  • bat批处理命令教程
  • js查看浏览器信息
  • js 小数取整的函数怎么写
  • 每天一篇文章锻炼口才的文章
  • 分享面试流程
  • 未缴税税务说明书
  • 县税务局可以去市里吗
  • 河南税务局官网手机版
  • 仓储用地和物流用地划分
  • 销售皮棉税率为多少
  • 白酒生产企业向百货公司销售试制药酒
  • 请问在哪里可以看到
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设