位置: IT常识 - 正文

unet模型及代码解析(unet模型代码matlab)

编辑:rootadmin
unet模型及代码解析 什么是unet

推荐整理分享unet模型及代码解析(unet模型代码matlab),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:unet原理,unet算法,unet算法,unet模型融合,unet算法,unet模型代码matlab,unet++模型,unet++模型,内容如对您有帮助,希望把文章链接给更多的朋友!

一个U型网络结构,2015年在图像分割领域大放异彩,unet被大量应用在分割领域。它是在FCN的基础上构建,它的U型结构解决了FCN无法上下文的信息和位置信息的弊端

Unet网络结构

主干结构解析

左边为特征提取网络(编码器),右边为特征融合网络(解码器)

高分辨率—编码—低分辨率—解码—高分辨率

特征提取网络

高分辨率—编码—低分辨率

前半部分是编码, 它的作用是特征提取(获取局部特征,并做图片级分类),得到抽象语义特征

由两个3x3的卷积层(RELU)再加上一个2x2的maxpooling层组成一个下采样的模块,一共经过4次这样的操作

特征融合网络

低分辨率—解码—高分辨率

利用前面编码的抽象特征来恢复到原图尺寸的过程, 最终得到分割结果(掩码图片)

由一层反卷积+特征拼接concat+两个3x3的卷积层(ReLU)反复构成,一共经过4次这样的操作,与特征提取网络刚好相对应,最后接一层1*1卷积,降维处理,即将通道数降低至特定的数量,得到目标图,具体内容可以参考这篇文章 一文读懂卷积神经网络中的1x1卷积核

FCN与UNet特征融合操作对比解析unet模型及代码解析(unet模型代码matlab)

FCN是通过特征图对应像素值的相加来融合特征的

torch代码:

concat1 = out1+out2# 其中out1与out2都是torch中的tensor格式

unet是通过同维度矩阵拼接来融合特征的

torch代码:

concat2 = torch.cat([convt1,conv4],dim=1)# dim = 1 意味着在第1维度方向(第1维也就是列为4的方向)进行叠加# 对于更高维的数据,也就是在dim = x 时,即x所对应维度方向进行叠加UNet主要创新点

采取将低级特征图与后面的高级特征图进行融合操作

完全对称的U型结构使得前后特征融合更为彻底,使得高分辨率信息与低分辨率信息在目标图片中增加

结合了下采样时的低分辨率信息(提供物体类别识别依据)和上采样时的高分辨率信息(提供精准分割定位依据),此外还通过融合操作(跳跃结构)填补底层信息以提高分割精度.(分辨率就是图片的尺寸)

对高层语义特征与底层空间信息的理解

越底层的特征蕴含的空间信息(分割定位特征)更多,语义特征(就是类别判断特征,像素点可以分到哪一个类别中去)更少,越高级的特征蕴含的空间信息更少,语义特征更多

底层特征图片更偏向于组成图像的基本单元,如点,线,边缘轮廓

高层抽象的特征就更抽象,更近似于表示的是图像的语义信息

注:图片来源于神经网络可视化论文《Visualizing and Understanding Convolutional Networks》

UNet与FCN的比较1.编解码结构

它们的结构都用了一个比较经典的思路,也就是编码和解码(encoder-decoder)结构,该结构早在2006年就被Hinton提出来发表在了nature上。当时这个encoder-decoder结构提出的主要作用并不是分割,而是压缩图像和去噪声。输入是一幅图,经过下采样的编码,得到一串比原先图像更小的特征,相当于压缩,然后再经过一个解码,理想状况就是能还原到原来的图像。这样的话我们存一幅图的时候就只需要存一个特征和一个解码器即可。同理,这个思路也可以用在原图像去噪,做法就是在训练的阶段在原图人为地加上噪声,然后放到这个编码解码器中,目标是可以还原得到原图。在UNet与FCN的目标任务中,是得到一张Mask掩码图,实现端到端(由图得到图),这与Hinton提出的编解码操作不谋而合。

和FCN相比,U-Net的第一个特点是完全对称,也就是左边和右边是很类似的,而FCN的解码器部分相对简单,只用了一个反卷积的操作,之后并没有跟上卷积结构。

2.全卷积结构UNet和FCN一样, 是全卷积形式, 没有全连接层(即没有固定图的尺寸)——全连接层输入是提前固定好的,所以容易适应很多输入尺寸大小3.跳跃结构,即特征融合操作UNet相比FCN,跳跃结构更多,更彻底,每一层下采样都与后面每一次上采样对应,一个经验的解释(大量实验)就是跳级连接能够保证特征更加精细UNet是拼接操作,而FCN是加操作模型torch代码解析import torch.nn as nnimport torch.nn.functional as Fimport torch.utils.dataimport torch""" 构造上采样模块--左边特征提取基础模块 """class conv_block(nn.Module): """ Convolution Block """ def __init__(self, in_ch, out_ch): super(conv_block, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1, bias=True), # 在卷积神经网络的卷积层之后总会添加BatchNorm2d进行数据的归一化处理,这使得数据在进行Relu之前不会因为数据过大而导致网络性能的不稳定 nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True)) def forward(self, x): x = self.conv(x) return x""" 构造下采样模块--右边特征融合基础模块 """class up_conv(nn.Module): """ Up Convolution Block """ def __init__(self, in_ch, out_ch): super(up_conv, self).__init__() self.up = nn.Sequential( nn.Upsample(scale_factor=2), nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) def forward(self, x): x = self.up(x) return x""" 模型主架构"""class U_Net(nn.Module): """ UNet - Basic Implementation Paper : https://arxiv.org/abs/1505.04597 """ # 输入是3个通道的RGB图,输出是0或1——因为我的任务是2分类任务 def __init__(self, in_ch=3, out_ch=2): super(U_Net, self).__init__() # 卷积参数设置 n1 = 64 filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16] # 最大池化层 self.Maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.Maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.Maxpool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.Maxpool4 = nn.MaxPool2d(kernel_size=2, stride=2) # 左边特征提取卷积层 self.Conv1 = conv_block(in_ch, filters[0]) self.Conv2 = conv_block(filters[0], filters[1]) self.Conv3 = conv_block(filters[1], filters[2]) self.Conv4 = conv_block(filters[2], filters[3]) self.Conv5 = conv_block(filters[3], filters[4]) # 右边特征融合反卷积层 self.Up5 = up_conv(filters[4], filters[3]) self.Up_conv5 = conv_block(filters[4], filters[3]) self.Up4 = up_conv(filters[3], filters[2]) self.Up_conv4 = conv_block(filters[3], filters[2]) self.Up3 = up_conv(filters[2], filters[1]) self.Up_conv3 = conv_block(filters[2], filters[1]) self.Up2 = up_conv(filters[1], filters[0]) self.Up_conv2 = conv_block(filters[1], filters[0]) self.Conv = nn.Conv2d(filters[0], out_ch, kernel_size=1, stride=1, padding=0)# 前向计算,输出一张与原图相同尺寸的图片矩阵 def forward(self, x): e1 = self.Conv1(x) e2 = self.Maxpool1(e1) e2 = self.Conv2(e2) e3 = self.Maxpool2(e2) e3 = self.Conv3(e3) e4 = self.Maxpool3(e3) e4 = self.Conv4(e4) e5 = self.Maxpool4(e4) e5 = self.Conv5(e5) d5 = self.Up5(e5) d5 = torch.cat((e4, d5), dim=1) # 将e4特征图与d5特征图横向拼接 d5 = self.Up_conv5(d5) d4 = self.Up4(d5) d4 = torch.cat((e3, d4), dim=1) # 将e3特征图与d4特征图横向拼接 d4 = self.Up_conv4(d4) d3 = self.Up3(d4) d3 = torch.cat((e2, d3), dim=1) # 将e2特征图与d3特征图横向拼接 d3 = self.Up_conv3(d3) d2 = self.Up2(d3) d2 = torch.cat((e1, d2), dim=1) # 将e1特征图与d1特征图横向拼接 d2 = self.Up_conv2(d2) out = self.Conv(d2) return out

参考文章:

https://blog.csdn.net/weixin_40519315/article/details/104408388

本文链接地址:https://www.jiuchutong.com/zhishi/299999.html 转载请保留说明!

上一篇:axios 中如何取消请求_从不会使用到精通原理_番茄出品(如何取消axios请求)

下一篇:JS数组方法中哪些会改变原数组,哪些不会?(js中数组方法有哪些)

  • 美团优选怎么取消订单(美团优选怎么取消省钱卡)

    美团优选怎么取消订单(美团优选怎么取消省钱卡)

  • excel浅红色填充色深红色文本怎么设置(excel设置浅红色填充)

    excel浅红色填充色深红色文本怎么设置(excel设置浅红色填充)

  • 全民k歌下载的歌在哪里找到(全民k歌下载的歌曲怎么导出来)

    全民k歌下载的歌在哪里找到(全民k歌下载的歌曲怎么导出来)

  • dns故障无法上网(dns网络故障)

    dns故障无法上网(dns网络故障)

  • iphone7拆机触控id失效(苹果7触摸ic维修视频)

    iphone7拆机触控id失效(苹果7触摸ic维修视频)

  • 苹果手机定位未找到位置什么意思(苹果手机定位未授权是什么意思)

    苹果手机定位未找到位置什么意思(苹果手机定位未授权是什么意思)

  • 有流量微信显示网络连接不可用(有流量微信显示网络异常)

    有流量微信显示网络连接不可用(有流量微信显示网络异常)

  • 电脑右键粘贴是灰色的(电脑右键复制粘贴没有了)

    电脑右键粘贴是灰色的(电脑右键复制粘贴没有了)

  • iphone11会发烫吗(苹果11手机会不会发烫)

    iphone11会发烫吗(苹果11手机会不会发烫)

  • opporeno2微信视频为什么没有美颜(opporeno2微信视频老掉)

    opporeno2微信视频为什么没有美颜(opporeno2微信视频老掉)

  • onenet是什么(one online什么意思)

    onenet是什么(one online什么意思)

  • 隐藏会话关联看得到吗(隐藏会话关联会看到吗)

    隐藏会话关联看得到吗(隐藏会话关联会看到吗)

  • word文档筛选在哪里(word文档 筛选)

    word文档筛选在哪里(word文档 筛选)

  • 苹果如何设置点击亮屏(苹果如何设置点击屏幕亮屏)

    苹果如何设置点击亮屏(苹果如何设置点击屏幕亮屏)

  • 小米6怎么设置关屏亮时间(小米6怎么设置门禁卡)

    小米6怎么设置关屏亮时间(小米6怎么设置门禁卡)

  • word下划线固定长度(word下划线固定住了怎么办)

    word下划线固定长度(word下划线固定住了怎么办)

  • 闲鱼怎么设置登录密码(闲鱼怎么设置登录隐藏)

    闲鱼怎么设置登录密码(闲鱼怎么设置登录隐藏)

  • 微信运动一万步多少公里(微信运动一万步相当于多少公里)

    微信运动一万步多少公里(微信运动一万步相当于多少公里)

  • imessage已送达一直没有已读

    imessage已送达一直没有已读

  • 一加怎么查激活时间(一加手机如何查激活)

    一加怎么查激活时间(一加手机如何查激活)

  • 怎么设置qq主页飘字(怎么设置qq主页背景自定义)

    怎么设置qq主页飘字(怎么设置qq主页背景自定义)

  • iphone倒数日怎么显示在桌面(iphone倒数日怎么正数)

    iphone倒数日怎么显示在桌面(iphone倒数日怎么正数)

  • 小米手机带红外功能吗(小米手机带红外线吗)

    小米手机带红外功能吗(小米手机带红外线吗)

  • ppt演示文稿的扩展名是什么(演示文稿的扩展名是什么?)

    ppt演示文稿的扩展名是什么(演示文稿的扩展名是什么?)

  • dede富文本内容中屏蔽标签(富文本word)

    dede富文本内容中屏蔽标签(富文本word)

  • 出口抵减内销产品应纳税额为什么在借方
  • 进口设备退税如何账务处理?
  • 公司附加税怎么计算
  • 可以公账户给私账转账吗
  • 收到单位借款如何处理
  • 主营业务成本包括职工薪酬吗
  • 公帐一个月能提多少现金出来
  • 境外中资企业转让股权的涉税处理
  • 税收的性质是哪一项
  • 对方把发票丢了可以重开吗
  • 通用原始凭证有哪些?
  • 品种法在制造企业中的运用
  • 办公用品增值税专用发票税点
  • 职工福利费扣除标准2022
  • 发票税率开错怎么处理?
  • 资本化和费用化的条件
  • etc发票抵扣进项
  • 文化建设事业费优惠政策
  • 同一控制下合并日后合并报表的编制
  • 采用支票结算方式的基本业务处理程序
  • 钱已确定收不回怎么办
  • cdr插件哪个最好用
  • 电脑硬件检修
  • windows10office更新
  • 电脑中病毒了怎么重装系统
  • windows10无法打开此类型的文件(.exe)
  • 网关设置
  • centos只有lo
  • 公司多缴税款超过3年怎么办
  • linux安装linux
  • 总结关于现金清查的会计核算分录
  • wordpress.org
  • 流转税政策
  • 城镇土地使用税纳税义务发生时间
  • 企业发给员工的食堂补贴需要交个税吗
  • Maximum call stack size exceeded错误
  • php如何实现伪静态
  • vue-cli2.0
  • 货款收不回来会计分录
  • phpcms v9官网
  • 个人以不动产投资成立一人有限公司
  • mysql数据库常用sql语句
  • mongodb4.4.2安装教程
  • 电脑word怎么学
  • 小微企业所得税税率
  • 办税人员可绑定银行卡吗
  • 建筑企业工程结算账务处理
  • 进口产品销售需要交税吗
  • 长期股权投资权益法账务处理
  • 教育行业税收优惠政策2022
  • 增值税普通发票和电子普通发票的区别
  • 增值税留抵税额借贷方向
  • 预付房租计入长期待摊费用吗
  • 海关缴款通知书怎么查看
  • 法人转让股权,可以打个人账户吗
  • 销项税和进项税计算公式
  • 计提福利费是什么意思
  • 长期待摊费用每个月摊销多少
  • 企业购进的固定资产
  • 固定成本包括哪些项目
  • sql2005 HashBytes 加密函数
  • win10开始无法打开
  • 为什么要淘汰相关性高的指标
  • 进程audiodg.exe
  • Win10怎么修改hosts文件
  • linux 文件执行
  • centos7 lvcreate
  • Linux Bash Shell入门教程
  • win8资源管理器未响应
  • react either
  • android view动画
  • xcode配置opencv
  • [置顶] 混合、反走样、雾效、多边形偏移
  • listview点击获取内容
  • js双击触发
  • python元数据
  • 2020 unity
  • 社保每个月几号截止申报
  • 网上申领的电子发票如何读入金税盘
  • 国地税发展历程
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设