位置: IT常识 - 正文

【魔改YOLOv5-6.x(4)】结合EIoU、Alpha-IoU损失函数(魔改apk)

编辑:rootadmin
【魔改YOLOv5-6.x(4)】结合EIoU、Alpha-IoU损失函数 文章目录前言EIoU论文简介加入YOLOv5Alpha-IoU论文简介加入YOLOv5References前言

推荐整理分享【魔改YOLOv5-6.x(4)】结合EIoU、Alpha-IoU损失函数(魔改apk),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:魔改u me,yolo修改器,魔改6.67,魔改ui,魔改ui,v50魔改,魔改u me,yolo修改器,内容如对您有帮助,希望把文章链接给更多的朋友!

本文使用的YOLOv5版本为v6.1,对YOLOv5-6.x网络结构还不熟悉的同学,可以移步至:【YOLOv5-6.x】网络模型&源码解析

想要尝试改进YOLOv5-6.1的同学,可以参考以下几篇博客:

【魔改YOLOv5-6.x(上)】结合轻量化网络Shufflenetv2、Mobilenetv3和Ghostnet

【魔改YOLOv5-6.x(中)】加入ACON激活函数、CBAM和CA注意力机制、加权双向特征金字塔BiFPN

【魔改YOLOv5-6.x(下)】YOLOv5s+Ghostconv+BiFPN+CA

EIoU

Zhang, Yi-Fan, et al. “Focal and efficient IOU loss for accurate bounding box regression.” arXiv preprint arXiv:2101.08158 (2021).

论文地址

论文简介

我们知道,CIoU损失是在DIoU损失的基础上添加了衡量预测框和GT框纵横比vvv,在一定程度上可以加快预测框的回归速度,但是仍然存在着很大的问题:

在预测框回归过程中,一旦预测框和GT框的宽高纵横比呈现线性比例时,CIoU中添加的相对比例的惩罚项便不再起作用根据预测框w和h的梯度公式可以推知,w和h在其中一个值增大时,另外一个值必须减小,它俩不能保持同增同减【魔改YOLOv5-6.x(4)】结合EIoU、Alpha-IoU损失函数(魔改apk)

为了解决这个问题,EIoU提出了直接对w和h的预测结果进行惩罚的损失函数: LEIoU=LIoU+Ldis +Lasp =1−IoU+ρ2(b,bgt)c2+ρ2(w,wgt)Cw2+ρ2(h,hgt)Ch2\begin{aligned} \mathcal{L}_\mathrm{E I o U} &=\mathcal{L}_\mathrm{I o U}+\mathcal{L}_{\text {dis }}+\mathcal{L}_{\text {asp }} \\ &=1-I o U+\frac{\rho^{2}\left(\mathbf{b}, \mathbf{b}^\mathrm{g t}\right)}{c^{2}}+\frac{\rho^{2}\left(w, w^\mathrm{g t}\right)}{C_\mathrm{w}^{2}}+\frac{\rho^{2}\left(h, h^\mathrm{g t}\right)}{C_\mathrm{h}^{2}} \end{aligned}LEIoU​​=LIoU​+Ldis ​+Lasp ​=1−IoU+c2ρ2(b,bgt)​+Cw2​ρ2(w,wgt)​+Ch2​ρ2(h,hgt)​​

其中Cw2C_\mathrm{w}^2Cw2​和Ch2C_\mathrm{h}^2Ch2​分别是预测框和GT框最小外接矩形的宽和高EIoU将损失函数分成了三个部分:预测框和真实框的重叠损失LEIoU\mathcal{L}_\mathrm{E I o U}LEIoU​预测框和真实框的中心距离损失Ldis\mathcal{L}_\mathrm{dis}Ldis​预测框和真实框的宽和高损失Lasp\mathcal{L}_\mathrm{asp}Lasp​EIOU损失的前两部分延续CIOU中的方法,而宽高损失直接使预测框与真实框的宽度和高度之差最小,使得收敛速度更快

下图是GIoU、CIoU和EIoU损失预测框的迭代过程对比图,红色框和绿色框就是预测框的回归过程,蓝色框是真实框,黑色框是预先设定的锚框:

GIoU的问题是使用最小外接矩形的面积减去并集的面积作为惩罚项,这导致了GIoU存在先扩大并集面积,再优化IoU的走弯路的问题CIoU的问题是宽和高不能同时增大或者减小,而EIoU则可以

除此之外,论文中还提到了利用Focal Loss对EIOU进行加权处理: LFocal−EIoU=IoUγ∗LEIoUL_\mathrm{Focal-EIoU}=IoU^{\gamma}*L_\mathrm{EIoU}LFocal−EIoU​=IoUγ∗LEIoU​

加入YOLOv5在utils/metrics.py中,找到bbox_iou函数,可以把原有的注释掉,换成下面的代码:# 计算两个框的特定IOUdef bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, EIoU=False, eps=1e-7): # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 # 这里取转置,为了后续方便每个维度(坐标)之间的计算 box2 = box2.T # Get the coordinates of bounding boxes if x1y1x2y2: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] else: # transform from xywh to xyxy 默认执行这里 b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 # Intersection area inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) # Union Area w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps union = w1 * h1 + w2 * h2 - inter + eps iou = inter / union # 目标框IOU损失函数的计算 if CIoU or DIoU or GIoU or EIoU: # 两个框的最小闭包区域的width cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width # 两个框的最小闭包区域的height ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height if CIoU or DIoU or EIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 # 最小外接矩形 对角线的长度平方 c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared # 两个框中心点之间距离的平方 rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared if DIoU: return iou - rho2 / c2 # DIoU # CIoU 比DIoU多了限制长宽比的因素:v * alpha elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) with torch.no_grad(): alpha = v / (v - iou + (1 + eps)) return iou - (rho2 / c2 + v * alpha) # EIoU 在CIoU的基础上将纵横比的损失项拆分成预测的宽高分别与最小外接框宽高的差值 加速了收敛提高了回归精度 elif EIoU: rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2 rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2 cw2 = cw ** 2 + eps ch2 = ch ** 2 + eps return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # GIoU https://arxiv.org/pdf/1902.09630.pdf c_area = cw * ch + eps # convex area return iou - (c_area - union) / c_area return iou # IoU在utils/loss.py中,找到ComputeLoss类中的__call__()函数,把Regression loss中计算iou的代码,换成下面这句:iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=False, EIoU=True) # iou(prediction, target)Alpha-IoU

He, Jiabo, et al. “$\alpha $-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression.” Advances in Neural Information Processing Systems 34 (2021).

论文地址

论文简介

由于IoU Loss对于bbox尺度不变,可以训练出更好的检测器,因此在目标检测中常采用IOU Loss对预测框计算定位回归损失(在YOLOv5中采用CIoU Loss)

而本文提出的Alpha-IoU Loss是基于现有IoU Loss的统一幂化,即对所有的IoU Loss,增加α\alphaα幂,当α\alphaα等于1时,则回归到原始各个Loss中: LIoU=1−IoU⟹Lα−IoU=1−IoUαLGIoU=1−IoU+∣C−(B∪Bgt)∣∣C∣⟹Lα−GIoU=1−IoUα+(∣C−(B∪Bgt)∣∣C∣)αLDIoU=1−IoU+ρ2(b,bgt)c2⟹Lα−DIoU=1−IoUα+ρ2α(b,bgt)c2αLCIoU=1−IoU+ρ2(b,bgt)c2+βv⟹Lα−CIoU=1−IoUα+ρ2α(b,bgt)c2α+(βv)α\begin{aligned} \mathcal{L}_{\mathrm{IoU}}=1-I o U & \Longrightarrow \mathcal{L}_{\alpha-\mathrm{IoU}}=1-I o U^{\alpha} \\ \mathcal{L}_{\mathrm{GIoU}}=1-I o U+\frac{\left|C-\left(B \cup B^\mathrm{g t}\right)\right|}{|C|} & \Longrightarrow \mathcal{L}_{\alpha-\mathrm{GIoU}}=1-I o U^{\alpha}+\left(\frac{\left|C-\left(B \cup B^\mathrm{g t}\right)\right|}{|C|}\right)^{\alpha} \\ \mathcal{L}_{\mathrm{DIoU}}=1-I o U+\frac{\rho^{2}\left(\boldsymbol{b}, \boldsymbol{b}^\mathrm{g t}\right)}{c^{2}} & \Longrightarrow \mathcal{L}_{\alpha-\mathrm{DIoU}}=1-I o U^{\alpha}+\frac{\rho^{2 \alpha}\left(\boldsymbol{b}, \boldsymbol{b}^\mathrm{g t}\right)}{c^{2 \alpha}} \\ \mathcal{L}_{\mathrm{CIoU}}=1-I o U+\frac{\rho^{2}\left(\boldsymbol{b}, \boldsymbol{b}^\mathrm{g t}\right)}{c^{2}}+\beta v & \Longrightarrow \mathcal{L}_{\alpha-\mathrm{CIoU}}=1-I o U^{\alpha}+\frac{\rho^{2 \alpha}\left(\boldsymbol{b}, \boldsymbol{b}^\mathrm{g t}\right)}{c^{2 \alpha}}+(\beta v)^{\alpha} \end{aligned}LIoU​=1−IoULGIoU​=1−IoU+∣C∣∣C−(B∪Bgt)∣​LDIoU​=1−IoU+c2ρ2(b,bgt)​LCIoU​=1−IoU+c2ρ2(b,bgt)​+βv​⟹Lα−IoU​=1−IoUα⟹Lα−GIoU​=1−IoUα+(∣C∣∣C−(B∪Bgt)∣​)α⟹Lα−DIoU​=1−IoUα+c2αρ2α(b,bgt)​⟹Lα−CIoU​=1−IoUα+c2αρ2α(b,bgt)​+(βv)α​

加入YOLOv5# Alpha-IOU:https://arxiv.org/abs/2110.13675# 参考:https://mp.weixin.qq.com/s/l22GJtA7Vd11dpY9QG4k2Adef bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, EIoU=False, alpha=3, eps=1e-9): # Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4 box2 = box2.T # Get the coordinates of bounding boxes if x1y1x2y2: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] else: # transform from xywh to xyxy b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 # Intersection area inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) # Union Area w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps union = w1 * h1 + w2 * h2 - inter + eps # change iou into pow(iou+eps) 加入α次幂 # alpha iou iou = torch.pow(inter / union + eps, alpha) beta = 2 * alpha if GIoU or DIoU or CIoU or EIoU: # 两个框的最小闭包区域的width和height cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height if CIoU or DIoU or EIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 # 最小外接矩形 对角线的长度平方 c2 = cw ** beta + ch ** beta + eps # convex diagonal rho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2) rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2) # 两个框中心点之间距离的平方 rho2 = (rho_x ** beta + rho_y ** beta) / (2 ** beta) # center distance if DIoU: return iou - rho2 / c2 # DIoU elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) with torch.no_grad(): alpha_ciou = v / ((1 + eps) - inter / union + v) # return iou - (rho2 / c2 + v * alpha_ciou) # CIoU return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)) # CIoU # EIoU 在CIoU的基础上 # 将预测框宽高的纵横比损失项 拆分成预测框的宽高分别与最小外接框宽高的差值 # 加速了收敛提高了回归精度 elif EIoU: rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** beta rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** beta cw2 = cw ** beta + eps ch2 = ch ** beta + eps return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # GIoU https://arxiv.org/pdf/1902.09630.pdf c_area = torch.max(cw * ch + eps, union) # convex area return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU else: return iou # torch.log(iou+eps) or iouReferences

即插即用| Alpha_IOU loss助力yolov5优化

损失函数之Focal-EIoU Loss

目标检测中的预测框回归优化之IOU、GIOU、DIOU、CIOU和EIOU

深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU损失函数分析及Pytorch实现

本文链接地址:https://www.jiuchutong.com/zhishi/300325.html 转载请保留说明!

上一篇:前端基础之CSS扫盲(前端schema)

下一篇:NeRF总结(nerf新手入门)

  • 苹果13有没有粉色(苹果13有没有粉丝)

    苹果13有没有粉色(苹果13有没有粉丝)

  • 微信语音转换文字设置在哪里(微信语音转换文字怎么关闭)

    微信语音转换文字设置在哪里(微信语音转换文字怎么关闭)

  • 华为荣耀50怎么恢复彩色屏幕(华为荣耀50怎么开空调)

    华为荣耀50怎么恢复彩色屏幕(华为荣耀50怎么开空调)

  • OPPO手机怎么设置儿童使用时间(oppo手机怎么设置锁屏密码)

    OPPO手机怎么设置儿童使用时间(oppo手机怎么设置锁屏密码)

  • 小米10s有8+256g的版本吗(小米10s(8+128))

    小米10s有8+256g的版本吗(小米10s(8+128))

  • 微信被搜账号异常 无法显示是什么意思(微信被搜账号异常是什么原因)

    微信被搜账号异常 无法显示是什么意思(微信被搜账号异常是什么原因)

  • 为什么自拍很模糊(为什么自拍很模糊不清)

    为什么自拍很模糊(为什么自拍很模糊不清)

  • 苹果id永久删除过还能注册吗(苹果id永久删除账号icloud还在吗)

    苹果id永久删除过还能注册吗(苹果id永久删除账号icloud还在吗)

  • 移出黑名单聊天记录还在吗(从黑名单移出来还有聊天记录吗)

    移出黑名单聊天记录还在吗(从黑名单移出来还有聊天记录吗)

  • 抖音小号是什么意思(抖音不实名认证可以开小店吗)

    抖音小号是什么意思(抖音不实名认证可以开小店吗)

  • ipad pro 2020可以用pencil一代吗(ipad pro 2020可以取代笔记本吗)

    ipad pro 2020可以用pencil一代吗(ipad pro 2020可以取代笔记本吗)

  • 抖音不能拍视频是怎么回事(怎么在抖音上传视频)

    抖音不能拍视频是怎么回事(怎么在抖音上传视频)

  • 钻卡抖音如何获得(钻卡抖音怎么获得)

    钻卡抖音如何获得(钻卡抖音怎么获得)

  • hdd ssd硬盘有何区别(硬盘hdd和ssd区别)

    hdd ssd硬盘有何区别(硬盘hdd和ssd区别)

  • 12306审核需要多久(铁路12306审核状态要多久)

    12306审核需要多久(铁路12306审核状态要多久)

  • 为什么手机充电会充一下断一下(为什么手机充电充不进去)

    为什么手机充电会充一下断一下(为什么手机充电充不进去)

  • 品胜数据线苹果认证吗(品胜数据线苹果手机突然充不进去电)

    品胜数据线苹果认证吗(品胜数据线苹果手机突然充不进去电)

  • 华为9x指纹解锁在哪(华为9x指纹解锁怎么没有了)

    华为9x指纹解锁在哪(华为9x指纹解锁怎么没有了)

  • 如何查看手机系统版本(如何查看手机系统更新记录)

    如何查看手机系统版本(如何查看手机系统更新记录)

  • 拼多多果果农场怎么进(拼多多 多多果园在哪里啊)

    拼多多果果农场怎么进(拼多多 多多果园在哪里啊)

  • (15) 如何设置Linux实现与Windows的共享访问?  Linux Windows  乐维UP(如何设置linux)

    (15) 如何设置Linux实现与Windows的共享访问? Linux Windows 乐维UP(如何设置linux)

  • phpcms控制器在哪(phpcms使用教程)

    phpcms控制器在哪(phpcms使用教程)

  • 其他负债是流动负债还是非流动负债
  • 航天金税财务软件使用说明
  • 出租车定额发票真伪查询
  • 租地建厂房合同
  • 金融企业往来收入科目属于什么科
  • 技术转让收入纳税调整
  • 扣员工工会会费
  • 收到招聘通知
  • 小规模纳税人代理记账一般多少钱
  • 购买原材料已付款怎么记账
  • 印花税为什么不计入资产成本
  • 可以对开发票吗
  • 非直接结算是什么意思
  • 增长率应该要如何计算呢?
  • 无票收入可以存钱吗
  • 供热公司向用户提供
  • 固定资产报多好还是报少好
  • 费用报销交通费
  • 印花税退款分录
  • 无法ping通ip地址
  • 凭证导致账簿错误
  • 加计扣除减免政策
  • 前端面试题目100及最佳答案
  • SSD目标检测算法
  • adan算法
  • js es6常用方法
  • tf-idf计算
  • css常见的选择器有哪几种
  • 土地使用权的使用方式
  • 会计要离职了要注意几点
  • 行政事业单位支出劳务费规定
  • 销售免税农产品如何开票
  • 帝国cms数据表
  • sql2005安装不上
  • linux中ubuntu安装教程
  • 成本会计制造费用核算的内容
  • 一般纳税人年收入500万交多少税
  • 个体户季度免多少税
  • 合同补充协议印花税怎么交
  • 付国外专利费用需办什么手续
  • 专票红冲要不要收回发票联呢?
  • 银行会计的基本核算方法包括的内容有
  • 国税局领发票是哪些项目需要收取费用
  • 无法取得发票的成本能列支吗
  • db2入门
  • sql server 创建数据表状态1第三行语法错误怎么回事
  • mysql 索引 key
  • 付款退回怎么做账
  • 以前年度损益调整借贷方向
  • 转让股权收入属于收入总额吗
  • 差旅费记入哪个费用
  • 职工医保门诊一年报销多少钱
  • 用友无法填制凭证
  • 税控盘反写怎么操作流程
  • 发票备注栏填写内容
  • 废品损失明细账应选择三栏式
  • 在windows中下列叙述正确的是什么
  • centos的优缺点
  • vmwareworkstation10虚拟机
  • Winxp安装光盘修复
  • 如何重置win10
  • window8设置ip
  • win10如何打开defender
  • windows7老是死机
  • win8安全和维护在哪
  • win7系统检测
  • win7系统安装程序正在启动一直转圈圈
  • win 10预览版
  • cocos2dx 3.0 beta android环境配置
  • option标签的作用
  • perl脚本输出变量
  • c和unity3d
  • jquery可以实现哪些效果
  • vue使用jssdk
  • bootstrapcdn
  • python入坑指南
  • 税务局追缴社保流程及办理期限
  • 营改增后的工程造价怎么算
  • 2020重庆税务局
  • 全国税务稽查会议
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设