位置: IT常识 - 正文

【魔改YOLOv5-6.x(4)】结合EIoU、Alpha-IoU损失函数(魔改apk)

编辑:rootadmin
【魔改YOLOv5-6.x(4)】结合EIoU、Alpha-IoU损失函数 文章目录前言EIoU论文简介加入YOLOv5Alpha-IoU论文简介加入YOLOv5References前言

推荐整理分享【魔改YOLOv5-6.x(4)】结合EIoU、Alpha-IoU损失函数(魔改apk),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:魔改u me,yolo修改器,魔改6.67,魔改ui,魔改ui,v50魔改,魔改u me,yolo修改器,内容如对您有帮助,希望把文章链接给更多的朋友!

本文使用的YOLOv5版本为v6.1,对YOLOv5-6.x网络结构还不熟悉的同学,可以移步至:【YOLOv5-6.x】网络模型&源码解析

想要尝试改进YOLOv5-6.1的同学,可以参考以下几篇博客:

【魔改YOLOv5-6.x(上)】结合轻量化网络Shufflenetv2、Mobilenetv3和Ghostnet

【魔改YOLOv5-6.x(中)】加入ACON激活函数、CBAM和CA注意力机制、加权双向特征金字塔BiFPN

【魔改YOLOv5-6.x(下)】YOLOv5s+Ghostconv+BiFPN+CA

EIoU

Zhang, Yi-Fan, et al. “Focal and efficient IOU loss for accurate bounding box regression.” arXiv preprint arXiv:2101.08158 (2021).

论文地址

论文简介

我们知道,CIoU损失是在DIoU损失的基础上添加了衡量预测框和GT框纵横比vvv,在一定程度上可以加快预测框的回归速度,但是仍然存在着很大的问题:

在预测框回归过程中,一旦预测框和GT框的宽高纵横比呈现线性比例时,CIoU中添加的相对比例的惩罚项便不再起作用根据预测框w和h的梯度公式可以推知,w和h在其中一个值增大时,另外一个值必须减小,它俩不能保持同增同减【魔改YOLOv5-6.x(4)】结合EIoU、Alpha-IoU损失函数(魔改apk)

为了解决这个问题,EIoU提出了直接对w和h的预测结果进行惩罚的损失函数: LEIoU=LIoU+Ldis +Lasp =1−IoU+ρ2(b,bgt)c2+ρ2(w,wgt)Cw2+ρ2(h,hgt)Ch2\begin{aligned} \mathcal{L}_\mathrm{E I o U} &=\mathcal{L}_\mathrm{I o U}+\mathcal{L}_{\text {dis }}+\mathcal{L}_{\text {asp }} \\ &=1-I o U+\frac{\rho^{2}\left(\mathbf{b}, \mathbf{b}^\mathrm{g t}\right)}{c^{2}}+\frac{\rho^{2}\left(w, w^\mathrm{g t}\right)}{C_\mathrm{w}^{2}}+\frac{\rho^{2}\left(h, h^\mathrm{g t}\right)}{C_\mathrm{h}^{2}} \end{aligned}LEIoU​​=LIoU​+Ldis ​+Lasp ​=1−IoU+c2ρ2(b,bgt)​+Cw2​ρ2(w,wgt)​+Ch2​ρ2(h,hgt)​​

其中Cw2C_\mathrm{w}^2Cw2​和Ch2C_\mathrm{h}^2Ch2​分别是预测框和GT框最小外接矩形的宽和高EIoU将损失函数分成了三个部分:预测框和真实框的重叠损失LEIoU\mathcal{L}_\mathrm{E I o U}LEIoU​预测框和真实框的中心距离损失Ldis\mathcal{L}_\mathrm{dis}Ldis​预测框和真实框的宽和高损失Lasp\mathcal{L}_\mathrm{asp}Lasp​EIOU损失的前两部分延续CIOU中的方法,而宽高损失直接使预测框与真实框的宽度和高度之差最小,使得收敛速度更快

下图是GIoU、CIoU和EIoU损失预测框的迭代过程对比图,红色框和绿色框就是预测框的回归过程,蓝色框是真实框,黑色框是预先设定的锚框:

GIoU的问题是使用最小外接矩形的面积减去并集的面积作为惩罚项,这导致了GIoU存在先扩大并集面积,再优化IoU的走弯路的问题CIoU的问题是宽和高不能同时增大或者减小,而EIoU则可以

除此之外,论文中还提到了利用Focal Loss对EIOU进行加权处理: LFocal−EIoU=IoUγ∗LEIoUL_\mathrm{Focal-EIoU}=IoU^{\gamma}*L_\mathrm{EIoU}LFocal−EIoU​=IoUγ∗LEIoU​

加入YOLOv5在utils/metrics.py中,找到bbox_iou函数,可以把原有的注释掉,换成下面的代码:# 计算两个框的特定IOUdef bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, EIoU=False, eps=1e-7): # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 # 这里取转置,为了后续方便每个维度(坐标)之间的计算 box2 = box2.T # Get the coordinates of bounding boxes if x1y1x2y2: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] else: # transform from xywh to xyxy 默认执行这里 b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 # Intersection area inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) # Union Area w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps union = w1 * h1 + w2 * h2 - inter + eps iou = inter / union # 目标框IOU损失函数的计算 if CIoU or DIoU or GIoU or EIoU: # 两个框的最小闭包区域的width cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width # 两个框的最小闭包区域的height ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height if CIoU or DIoU or EIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 # 最小外接矩形 对角线的长度平方 c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared # 两个框中心点之间距离的平方 rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared if DIoU: return iou - rho2 / c2 # DIoU # CIoU 比DIoU多了限制长宽比的因素:v * alpha elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) with torch.no_grad(): alpha = v / (v - iou + (1 + eps)) return iou - (rho2 / c2 + v * alpha) # EIoU 在CIoU的基础上将纵横比的损失项拆分成预测的宽高分别与最小外接框宽高的差值 加速了收敛提高了回归精度 elif EIoU: rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2 rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2 cw2 = cw ** 2 + eps ch2 = ch ** 2 + eps return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # GIoU https://arxiv.org/pdf/1902.09630.pdf c_area = cw * ch + eps # convex area return iou - (c_area - union) / c_area return iou # IoU在utils/loss.py中,找到ComputeLoss类中的__call__()函数,把Regression loss中计算iou的代码,换成下面这句:iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=False, EIoU=True) # iou(prediction, target)Alpha-IoU

He, Jiabo, et al. “$\alpha $-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression.” Advances in Neural Information Processing Systems 34 (2021).

论文地址

论文简介

由于IoU Loss对于bbox尺度不变,可以训练出更好的检测器,因此在目标检测中常采用IOU Loss对预测框计算定位回归损失(在YOLOv5中采用CIoU Loss)

而本文提出的Alpha-IoU Loss是基于现有IoU Loss的统一幂化,即对所有的IoU Loss,增加α\alphaα幂,当α\alphaα等于1时,则回归到原始各个Loss中: LIoU=1−IoU⟹Lα−IoU=1−IoUαLGIoU=1−IoU+∣C−(B∪Bgt)∣∣C∣⟹Lα−GIoU=1−IoUα+(∣C−(B∪Bgt)∣∣C∣)αLDIoU=1−IoU+ρ2(b,bgt)c2⟹Lα−DIoU=1−IoUα+ρ2α(b,bgt)c2αLCIoU=1−IoU+ρ2(b,bgt)c2+βv⟹Lα−CIoU=1−IoUα+ρ2α(b,bgt)c2α+(βv)α\begin{aligned} \mathcal{L}_{\mathrm{IoU}}=1-I o U & \Longrightarrow \mathcal{L}_{\alpha-\mathrm{IoU}}=1-I o U^{\alpha} \\ \mathcal{L}_{\mathrm{GIoU}}=1-I o U+\frac{\left|C-\left(B \cup B^\mathrm{g t}\right)\right|}{|C|} & \Longrightarrow \mathcal{L}_{\alpha-\mathrm{GIoU}}=1-I o U^{\alpha}+\left(\frac{\left|C-\left(B \cup B^\mathrm{g t}\right)\right|}{|C|}\right)^{\alpha} \\ \mathcal{L}_{\mathrm{DIoU}}=1-I o U+\frac{\rho^{2}\left(\boldsymbol{b}, \boldsymbol{b}^\mathrm{g t}\right)}{c^{2}} & \Longrightarrow \mathcal{L}_{\alpha-\mathrm{DIoU}}=1-I o U^{\alpha}+\frac{\rho^{2 \alpha}\left(\boldsymbol{b}, \boldsymbol{b}^\mathrm{g t}\right)}{c^{2 \alpha}} \\ \mathcal{L}_{\mathrm{CIoU}}=1-I o U+\frac{\rho^{2}\left(\boldsymbol{b}, \boldsymbol{b}^\mathrm{g t}\right)}{c^{2}}+\beta v & \Longrightarrow \mathcal{L}_{\alpha-\mathrm{CIoU}}=1-I o U^{\alpha}+\frac{\rho^{2 \alpha}\left(\boldsymbol{b}, \boldsymbol{b}^\mathrm{g t}\right)}{c^{2 \alpha}}+(\beta v)^{\alpha} \end{aligned}LIoU​=1−IoULGIoU​=1−IoU+∣C∣∣C−(B∪Bgt)∣​LDIoU​=1−IoU+c2ρ2(b,bgt)​LCIoU​=1−IoU+c2ρ2(b,bgt)​+βv​⟹Lα−IoU​=1−IoUα⟹Lα−GIoU​=1−IoUα+(∣C∣∣C−(B∪Bgt)∣​)α⟹Lα−DIoU​=1−IoUα+c2αρ2α(b,bgt)​⟹Lα−CIoU​=1−IoUα+c2αρ2α(b,bgt)​+(βv)α​

加入YOLOv5# Alpha-IOU:https://arxiv.org/abs/2110.13675# 参考:https://mp.weixin.qq.com/s/l22GJtA7Vd11dpY9QG4k2Adef bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, EIoU=False, alpha=3, eps=1e-9): # Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4 box2 = box2.T # Get the coordinates of bounding boxes if x1y1x2y2: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] else: # transform from xywh to xyxy b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 # Intersection area inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) # Union Area w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps union = w1 * h1 + w2 * h2 - inter + eps # change iou into pow(iou+eps) 加入α次幂 # alpha iou iou = torch.pow(inter / union + eps, alpha) beta = 2 * alpha if GIoU or DIoU or CIoU or EIoU: # 两个框的最小闭包区域的width和height cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height if CIoU or DIoU or EIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 # 最小外接矩形 对角线的长度平方 c2 = cw ** beta + ch ** beta + eps # convex diagonal rho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2) rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2) # 两个框中心点之间距离的平方 rho2 = (rho_x ** beta + rho_y ** beta) / (2 ** beta) # center distance if DIoU: return iou - rho2 / c2 # DIoU elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) with torch.no_grad(): alpha_ciou = v / ((1 + eps) - inter / union + v) # return iou - (rho2 / c2 + v * alpha_ciou) # CIoU return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)) # CIoU # EIoU 在CIoU的基础上 # 将预测框宽高的纵横比损失项 拆分成预测框的宽高分别与最小外接框宽高的差值 # 加速了收敛提高了回归精度 elif EIoU: rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** beta rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** beta cw2 = cw ** beta + eps ch2 = ch ** beta + eps return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # GIoU https://arxiv.org/pdf/1902.09630.pdf c_area = torch.max(cw * ch + eps, union) # convex area return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU else: return iou # torch.log(iou+eps) or iouReferences

即插即用| Alpha_IOU loss助力yolov5优化

损失函数之Focal-EIoU Loss

目标检测中的预测框回归优化之IOU、GIOU、DIOU、CIOU和EIOU

深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU损失函数分析及Pytorch实现

本文链接地址:https://www.jiuchutong.com/zhishi/300325.html 转载请保留说明!

上一篇:前端基础之CSS扫盲(前端schema)

下一篇:NeRF总结(nerf新手入门)

  • 个税申报本期收入指的是
  • 企业取得被投资单位的长期股权可以享有
  • 金蝶eas怎么用
  • 个体户增值税按开票额来申报吗
  • 建安企业个人所得税
  • 利用废旧物资生产设备
  • 劳务派遣个人所得税
  • 固定资产清理营业外支出汇算清缴需要调增吗
  • 增值税专用发票抵扣期限
  • 出借包装物收取的押金属于什么
  • 出口退税和企业所得税
  • 增值税抵扣联是什么意思
  • 个人独资企业没有公司章程吗?
  • 印花税所属期是7月到12月,可是税种认定是年,报不了
  • 房屋转租收入会计分录
  • 收据能入账抵税吗
  • 财务做账借贷分别表示
  • 收到别公司利息怎么记账
  • 土地增值税的土地成本要扣除增值税吗
  • 工业企业出售厂房需要预缴税款吗
  • 车辆的代驾费应该怎么收
  • linux 匹配字符
  • 进项税和销项税怎么抵扣
  • 冲减预付款
  • 如何更改自己
  • linux中怎么安装GUI
  • 无偿受赠房产出售税费
  • 工伤单位支付
  • 税务发票上的账户是对公账户吗
  • 压缩模制
  • php 文件上传类型限制
  • 新会计准则5步法
  • 增值税留抵抵欠流程
  • ajax调用php接口
  • 【创作赢红包】项目信息分析表
  • 货运代理约柜费怎么算
  • 客户赔偿款放在哪里
  • 报销职工福利
  • 循环logo
  • 房产中介收取的贷款服务费合不合法
  • 加油发票怎么报税
  • 含税与不含税的区别是什么
  • 结转成本时库存商品是负数
  • 小规模纳税人应交税费的二级科目
  • 提供劳务收入包含什么
  • 分支机构注销后往来账如何处理?
  • 信用减值损失属于公允价值变动收益吗
  • 利润分配未分配利润是净利润吗
  • 未确认融资费用账务处理
  • 计提福利费是什么意思
  • 待抵扣进项税额分录
  • 出售其他权益工具投资其他综合收益
  • 建筑行业跨期收益怎么算
  • 建筑业外包工程包括哪些
  • 管理不善造成的存货盘亏损失计入什么科目
  • 兼职工资怎么做账
  • 明细账摘要写错了怎么修改
  • sqlserver数据库中表的类型有哪些
  • 苹果电脑mac怎么卸载软件
  • linux系统中用户可以分为三种
  • kenmail.exe进程有什么用 是什么进程 kenmail进程查询
  • win10专业版系统安装教程
  • linux useradd(adduser)命令参数及用法详解(linux创建新用户命令)
  • win10mobile官网
  • 2015.6.28开始写博客记录cocos2dx学习历程
  • ajax 编码
  • javascript中的函数
  • 图文详解地理图册电子版
  • 批处理删除注册表指定项
  • js数组每个元素+1
  • 复制到文件夹怎么弄
  • unity5.x游戏开发指南
  • unity 内存管理
  • u3d脚本语言
  • nvm下载安装
  • javascript的主要内容
  • jquery插件库怎么导入
  • 辽宁省疫情期间工资发放标准
  • 西安税务办税服务厅
  • 税务非正常认定条件
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设