位置: IT常识 - 正文

智能优化算法:白鲸优化算法-附代码(智能优化算法及其MATLAB实例)

编辑:rootadmin
智能优化算法:白鲸优化算法-附代码 智能优化算法:白鲸优化算法

推荐整理分享智能优化算法:白鲸优化算法-附代码(智能优化算法及其MATLAB实例),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:智能优化算法及其应用,智能优化算法的优缺点,智能优化算法及其应用心得体会,智能优化算法有哪些,智能优化算法有哪些,智能优化算法及其应用心得体会,智能优化算法及其应用心得体会,智能优化算法有哪些,内容如对您有帮助,希望把文章链接给更多的朋友!

摘要:白鲸优化算法([Beluga whale optimization,BWO)是由是由 Changting Zhong 等于2022 年提出的一种群体智能优化算法。其灵感来源于白鲸的群体觅食行为。

1.白鲸优化算法

BWO建立了探索、开发和鲸鱼坠落的三个阶段,分别对应于成对游泳、捕食和鲸落的行为。BWO中的平衡因子和鲸落概率是自适应的,对控制探索和开发能力起着重要作用。此外,还引入了莱维飞行来增强开发阶段的全局收敛性。

智能优化算法:白鲸优化算法-附代码(智能优化算法及其MATLAB实例)

BWO算法可以从探索逐渐转换到开发,这取决于平衡因子  Bf\mathrm{~B}_{\mathrm{f}} Bf​ ,其定义为: Bf=B(1−T/(2 Tmax⁡))\mathrm{B}_{\mathrm{f}}=\mathrm{B}_0\left(1-\mathrm{T} /\left(2 \mathrm{~T}_{\max }\right)\right)Bf​=B0​(1−T/(2 Tmax​)) 其中, T\mathrm{T}T 是当前迭代次, Tmax⁡\mathrm{T}_{\max }Tmax​ 是最大迭代次数, B\mathrm{B}_0B0​ 在每次迭代中在 (,1)(0,1)(0,1) 之间随机变化。探索阶段发生在平衡因子 Bf>0.5\mathrm{B}_{\mathrm{f}}>0.5Bf​>0.5 时,而开发 阶段发生在 Bf≤0.5\mathrm{B}_{\mathrm{f}} \leq 0.5Bf​≤0.5 。随着迭代次数 T\mathrm{T}T 的增加, Bf\mathrm{B}_{\mathrm{f}}Bf​ 的波动范围从 (,1)(0,1)(0,1) 减小到 (,0.5)(0,0.5)(0,0.5) ,说明开发和探索阶段的概率发生了显著变化,而 开发阶段的概率随着迭代次数 T\mathrm{T}T 的不断增加而增加。

1.1 探索阶段

BWO的探索阶段是白鲸的游泳行为建立的。搜索代理的位置由白鲸的配对游泳决定,白鲸的位置更新如下: {Xi,jT+1=Xi,pjT+(Xr,p1T−Xi,pjT)(1+r1)sin⁡(2πr2),j= even Xi,jT+1=Xi,pjT+(Xr,p1T−Xi,pjT)(1+r1)cos⁡(2πr2),j=odd\begin{cases}\mathrm{X}_{\mathrm{i}, \mathrm{j}}^{\mathrm{T+1}}=\mathrm{X}_{\mathrm{i}, \mathrm{p}_{\mathrm{j}}}^{\mathrm{T}}+\left(\mathrm{X}_{\mathrm{r}, \mathrm{p}_1}^{\mathrm{T}}-\mathrm{X}_{\mathrm{i}, \mathrm{p}_{\mathrm{j}}}^{\mathrm{T}}\right)\left(1+\mathrm{r}_1\right) \sin \left(2 \pi \mathrm{r}_2\right), \mathrm{j}=\text { even } \\ \mathrm{X}_{\mathrm{i}, \mathrm{j}}^{\mathrm{T}+1}=\mathrm{X}_{\mathrm{i}, \mathrm{p}_{\mathrm{j}}}^{\mathrm{T}}+\left(\mathrm{X}_{\mathrm{r}, \mathrm{p}_1}^{\mathrm{T}}-\mathrm{X}_{\mathrm{i}, \mathrm{p}_{\mathrm{j}}}^{\mathrm{T}}\right)\left(1+\mathrm{r}_1\right) \cos \left(2 \pi \mathrm{r}_2\right), \quad \mathrm{j}=\mathrm{odd}\end{cases}⎩⎨⎧​Xi,jT+1​=Xi,pj​T​+(Xr,p1​T​−Xi,pj​T​)(1+r1​)sin(2πr2​),j= even Xi,jT+1​=Xi,pj​T​+(Xr,p1​T​−Xi,pj​T​)(1+r1​)cos(2πr2​),j=odd​ 其中, T\mathrm{T}T 是当前迭代次数, Xi,jT+1\mathrm{X}_{\mathrm{i}, \mathrm{j}}^{\mathrm{T+1}}Xi,jT+1​ 是第i只白鲸在第jjj维上的新位置, pj(j=1,2,⋯ ,d)\mathrm{p}_{\mathrm{j}}(\mathrm{j}=1,2, \cdots, \mathrm{d})pj​(j=1,2,⋯,d) 是从 d\mathrm{d}d 维中选择的随机整数, Xi,pjT\mathrm{X}_{\mathrm{i}, \mathrm{p} \mathrm{j}}^{\mathrm{T}}Xi,pjT​ 是第i条白鲸 在 pj\mathrm{p}_{\mathrm{j}}pj​ 维度上的位置, Xi,pjT\mathrm{X}_{\mathrm{i}, \mathrm{p}_{\mathrm{j}}}^{\mathrm{T}}Xi,pj​T​ 和 Xr,p1T\mathrm{X}_{\mathrm{r}, \mathrm{p} 1}^{\mathrm{T}}Xr,p1T​ 分别是第1条和第 r\mathrm{r}r 条白鲸的当前位置 (r\left(\mathrm{r}\right.(r 是随机选择的白鲸),随机数 r1r_1r1​ 和 r2r_2r2​ 用于增强探索阶段的随机算子 ,r1\mathrm{r}_1r1​ 和 r2\mathrm{r}_2r2​ 是 (,1)(0,1)(0,1) 的随机数, sin⁡(2πr2)\sin \left(2 \pi \mathrm{r}_2\right)sin(2πr2​) 和 sin⁡(2πr2)\sin \left(2 \pi \mathrm{r}_2\right)sin(2πr2​) 表示镜像白鲸的鲌朝向水面。根据奇偶数选择的维数,更新后的位置反映了白鲸在游泳或跳水时的同步或镜像行为。

1.2 开发阶段

BWO的开发阶段受到白鲸捕食行为的启发。白鲸可以根据附近白鲸的位置合作觅食和移动。因此,白鲸通过共享彼此的位置信息来捕 食,同时考虑最佳候选者和其他候选者。在BWO的开发阶段引入了莱维飞行策略,以增强收敛性。假设它们可以使用莱维飞行策略捕捉 猎物,数学模型表示为: XiT+1=r3Xbest T−r4XiT+C1⋅LF⋅(XrT−XiT)\mathrm{X}_{\mathrm{i}}^{\mathrm{T}+1}=\mathrm{r}_3 \mathrm{X}_{\text {best }}^{\mathrm{T}}-\mathrm{r}_4 \mathrm{X}_{\mathrm{i}}^{\mathrm{T}}+\mathrm{C}_1 \cdot \mathrm{L}_{\mathrm{F}} \cdot\left(\mathrm{X}_{\mathrm{r}}^{\mathrm{T}}-\mathrm{X}_{\mathrm{i}}^{\mathrm{T}}\right)XiT+1​=r3​Xbest T​−r4​XiT​+C1​⋅LF​⋅(XrT​−XiT​) 其中, T\mathrm{T}T 是当前迭代次数, XiT\mathrm{X}_{\mathrm{i}}^{\mathrm{T}}XiT​ 和 XrT\mathrm{X}_{\mathrm{r}}^{\mathrm{T}}XrT​ 分别是第 i\mathrm{i}i 条白鲸和随机白鲸的当前位置, XiT+1\mathrm{X}_{\mathrm{i}}^{\mathrm{T}+1}XiT+1​ 是第 i\mathrm{i}i 条白鲸的新位置, XbestT\mathrm{X}_{\mathrm{best}}^{\mathrm{T}}XbestT​ 是白鲸种群中的最佳位置, r3\mathrm{r}_3r3​ 和 r4\mathrm{r}_4r4​ 是 (,1)(0,1)(0,1) 之间的随机数, C1=2r4(1−T/Tmax⁡)\mathrm{C}_1=2 \mathrm{r}_4\left(1-\mathrm{T} / \mathrm{T}_{\max }\right)C1​=2r4​(1−T/Tmax​) 是衡量莱维飞行强度的随机跳跃强度。 LF\mathrm{L}_{\mathrm{F}}LF​ 是莱维飞行函数,计算如下: LF=0.05×u×σ∣v∣1/βσ=(Γ(1+β)×sin⁡(πβ/2)Γ((1+β)/2)×β×2(β−1)/2)1/β\begin{gathered} \mathrm{L}_{\mathrm{F}}=0.05 \times \frac{\mathrm{u} \times \sigma}{|\mathrm{v}|^{1 / \beta}} \\ \sigma=\left(\frac{\Gamma(1+\beta) \times \sin (\pi \beta / 2)}{\Gamma((1+\beta) / 2) \times \beta \times 2^{(\beta-1) / 2}}\right)^{1 / \beta} \end{gathered}LF​=0.05×∣v∣1/βu×σ​σ=(Γ((1+β)/2)×β×2(β−1)/2Γ(1+β)×sin(πβ/2)​)1/β​ 其中, uuu 和 vvv 为正态分布随机数, β\betaβ 为默认常数,等于1.5。

1.3 鲸鱼坠落

为了在每次迭代中模拟鲸鱼坠落的行为,从种群中的个体中选择鲸鱼坠落概率作为主观假设,以模拟群体中的小变化。假设这些白鲸要 么移到别处,要么被击落并坠入深海。为了确保种群大小的数量恒定,使用白鲸的位置和鲸鱼落体的步长来建立更新的位置。数学模型表 示为: XiT+1=r5XiT−r6XrT+r7Xstep \mathrm{X}_{\mathrm{i}}^{\mathrm{T}+1}=\mathrm{r}_5 \mathrm{X}_{\mathrm{i}}^{\mathrm{T}}-\mathrm{r}_6 \mathrm{X}_{\mathrm{r}}^{\mathrm{T}}+\mathrm{r}_7 \mathrm{X}_{\text {step }}XiT+1​=r5​XiT​−r6​XrT​+r7​Xstep ​ 其中, r5、r6\mathrm{r}_5 、 \mathrm{r}_6r5​、r6​ 和 r7\mathrm{r}_7r7​ 是 (,1)(0,1)(0,1) 之间的随机数, Xstep\mathrm{X}_{\mathrm{step}}Xstep​ 是鲸鱼坠落的步长,定义为: Xstep =(ub−lb)exp⁡(−C2 T/Tmax⁡)\mathrm{X}_{\text {step }}=\left(\mathrm{u}_{\mathrm{b}}-\mathrm{l}_{\mathrm{b}}\right) \exp \left(-\mathrm{C}_2 \mathrm{~T} / \mathrm{T}_{\max }\right)Xstep ​=(ub​−lb​)exp(−C2​ T/Tmax​) 其中, C2\mathrm{C}_2C2​ 是与鲸鱼下降概率和种群规模相关的阶跃因子 (C2=2 Wf×n)\left(\mathrm{C}_2=2 \mathrm{~W}_{\mathrm{f}} \times \mathrm{n}\right)(C2​=2 Wf​×n) , ub\mathrm{u}_{\mathrm{b}}ub​ 和 lb\mathrm{l}_{\mathrm{b}}lb​ 分别是变量的上下限。可以看出,步长受问题变量边 界、当前迭代次数和最大迭代次数的影响。 在该模型中,鲸鱼坠落概率 (Wf)\left(\mathrm{W}_{\mathrm{f}}\right)(Wf​) 作为线性函数计算: Wf=0.1−0.05 T/Tmax⁡\mathrm{W}_{\mathrm{f}}=0.1-0.05 \mathrm{~T} / \mathrm{T}_{\max }Wf​=0.1−0.05 T/Tmax​ 鲸鱼队落的概率从初始迭代的0.1降低到最后一次迭代的 0.050.050.05 ,表明在优化过程中,当白鲸更接近食物源时,白鲸的危险性降低。

3.实验结果

4.参考文献

[1] Changting Zhong, Gang Li, Zeng Meng. Beluga whale optimization: A novel nature-inspired metaheuristic algorithm[J]. Knowledge-Based Systems, 2022, 251: 109215.

5.Matlab代码6.python代码
本文链接地址:https://www.jiuchutong.com/zhishi/300360.html 转载请保留说明!

上一篇:使用Node.js手撸一个建静态Web服务器,内部CV指南(node-js)

下一篇:前端工程师都在用的 VSCode 常用插件(前端工程师在大学学什么专业)

  • 外贸企业税务处理方式
  • 进项税额转出的情况
  • 劳务公司临时工工资需要申报吗
  • 小规模纳税人差额计税情形
  • 个体工商户增值税申报操作流程
  • 外贸企业出口退税账务处理
  • 厂房装修增值税税率
  • 有限合伙企业注册资金要求
  • 退回房租含税的情况怎么入账?
  • 折扣零售商是什么意思
  • 银行询证函回函是什么意思
  • 混凝土增值税政策
  • 医保断缴多久后余额不能用
  • 年终奖专项扣除
  • 开票含税和不含税哪个划算
  • 未取得全额发票怎么处理
  • 缴纳海关进口增值税
  • 研发费用归集会计分录
  • 收据和发票有什么区别?买家电
  • 固定资产清理净值是什么意思
  • 收到服务费专票怎么做账
  • 党团活动经费如何节约
  • win7系统我的电脑图标不见了
  • 怎么删除office
  • 王者荣耀花木兰打法教学
  • 股东投资款验资后可以转出吗
  • 水煮鱼的做法和步骤 家常
  • 融资a轮之前
  • 木卫一距离木星多远
  • 折旧提取后资金如何处理
  • 营业外收入的会计要素
  • web前端综合案例开发离线作业1
  • 接受捐赠旧的固定资产以什么价格入帐
  • php7.2编译安装
  • laravel视频教程
  • 应付债券的会计处理
  • 学摄影要交学费吗
  • 残疾人就业保障金怎么申报
  • 融资租入的办公楼
  • 【深度学习时间序列预测案例】零基础入门经典深度学习时间序列预测项目实战(附代码+数据集+原理介绍)
  • 残保金是用人单位还是用工单位承担
  • 民政局登记的教育机构
  • C++ lower_bound/upper_bound用法解析
  • mysql详细教程
  • mongodb主从同步速度
  • java--IO流 ☞ 字节流
  • 长期待摊费用计提摊销的会计分录
  • 材料采购账户的借方登记什么
  • 京东开专用发票需要用公户付款吗?
  • mysql 自动断开
  • 软件研发费用怎么做账
  • 小规模减免的附加税怎么做账
  • 调整以前月份的管理费用怎么做
  • 应付账款借方余额负数表示什么
  • 还借款收据怎么写
  • 交易性金融资产入账价值怎么计算
  • 金税盘抵扣在申报表哪填
  • 发行优先股的发行费用
  • 公司往来借款怎么做账
  • 工程保险一般谁投保
  • 任何单位和个人都应当()为报警
  • 购入的无形资产加计扣除怎么算
  • 个体工商户达到多少缴税
  • sql server使用
  • deepin 2014系统下安装mysql数据库的方法步骤
  • win7系统如何恢复桌面图标
  • WIN10开始菜单点击鼠标右键没反应的处理方法
  • 生产环境如何对linux进行合理分区
  • mac book视频
  • cocos 2d x
  • 提高css文件可维性的方法
  • vue如何处理跨域
  • 如何用虚拟号码打电话
  • JavaScript中的NaN代表什么
  • python 嵌套
  • python字典常用操作以及字典的嵌套
  • easyui toolbar布局
  • 广西税务局发票查验平台
  • 公务员考试税局
  • 快手怎样代卖
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设