位置: IT常识 - 正文

Opencv实战——图像拼接(opencv官方教程)

编辑:rootadmin
Opencv实战——图像拼接 文章目录前言实现方法实现代码直接拼接加权处理总结前言

推荐整理分享Opencv实战——图像拼接(opencv官方教程),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:opencv详解,opencv图像处理入门,opencv实战项目教程,opencv图像处理入门,opencv教程,opencv tutorials,opencv tutorial,opencv tutorial,内容如对您有帮助,希望把文章链接给更多的朋友!

  图像拼接(Image Stitching)是一种利用实景图像组成全景空间的技术,它将多幅图像拼接成一幅大尺度图像或360度全景图,接可以看做是场景重建的一种特殊情况,其中图像仅通过平面单应性进行关联。图像拼接在运动检测和跟踪,增强现实,分辨率增强,视频压缩和图像稳定等机器视觉领域有很大的应用。   图像拼接的输出是两个输入图像的并集。通常用到四个步骤: 特征提取(Feature Extraction):检测输入图像中的特征点。

图像配准(Image Registration):建立了图像之间的几何对应关系,使它们可以在一个共同的参照系中进行变换、比较和分析。

图像变形(Warping):图像变形是指将其中一幅图像的图像重投影,并将图像放置在更大的画布上。

图像融合(Blending):图像融合是通过改变边界附近的图像灰度级,去除这些缝隙,创建混合图像,从而在图像之间实现平滑过渡。混合模式(Blend modes)用于将两层融合到一起。

实现方法

1、用SIFT提取图像中的特征点,并对每个关键点周围的区域计算特征向量。可以使用比SIFT快的SURF方法,但是我的opencv版本为最新版,不知道是专利的原因还是什么原因用SURF = cv2.xfeatures2D.SURF_create ()实例化的时候会报错,网上说可以退opencv版本,但是我这里没有尝试,就用了sift = cv2.SIFT_create()。 2、在分别提取好了两张图片的关键点和特征向量以后,可以利用它们进行两张图片的匹配。在拼接图片中,可以使用Knn进行匹配,但是使用FLANN快速匹配库更快,图片拼接,需要用到FLANN的单应性匹配。 3、单应性匹配完之后可以获得透视变换H矩阵,用这个的逆矩阵来对第二幅图片进行透视变换,将其转到和第一张图一样的视角,为下一步拼接做准备。 4、透视变化完后就可以直接拼接图片了,将图片通过numpy直接加到透视变化完成的图像的左边,覆盖掉重合的部分,得到拼接图片,但是这样拼接得图片中间会有一条很明显的缝隙,可以通过加权平均法,界线的两侧各取一定的比例来融合缝隙,速度快,但不自然。或者羽化法,或者拉普拉斯金字塔融合,效果最好。在这里用的是加权平均法,可以把第一张图叠在左边,但是对第一张图和它的重叠区做一些加权处理,重叠部分,离左边图近的,左边图的权重就高一些,离右边近的,右边旋转图的权重就高一些,然后两者相加,使得过渡是平滑地,这样看上去效果好一些,速度就比较慢。

实现代码Opencv实战——图像拼接(opencv官方教程)

先给出原图

直接拼接#导入库import cv2import numpy as npimport sysfrom PIL import Image#图像显示函数def show(name,img): cv2.imshow(name, img) cv2.waitKey(0) cv2.destroyAllWindows()#读取输入图片ima = cv2.imread("you.jpg")imb = cv2.imread("zuo.jpg")A = ima.copy()B = imb.copy()imageA = cv2.resize(A,(0,0),fx=0.2,fy=0.2)imageB = cv2.resize(B,(0,0),fx=0.2,fy=0.2)#检测A、B图片的SIFT关键特征点,并计算特征描述子def detectAndDescribe(image): # 建立SIFT生成器 sift = cv2.SIFT_create() # 检测SIFT特征点,并计算描述子 (kps, features) = sift.detectAndCompute(image, None) # 将结果转换成NumPy数组 kps = np.float32([kp.pt for kp in kps]) # 返回特征点集,及对应的描述特征 return (kps, features)#检测A、B图片的SIFT关键特征点,并计算特征描述子kpsA, featuresA = detectAndDescribe(imageA)kpsB, featuresB = detectAndDescribe(imageB)# 建立暴力匹配器bf = cv2.BFMatcher()# 使用KNN检测来自A、B图的SIFT特征匹配对,K=2matches = bf.knnMatch(featuresA, featuresB, 2)good = []for m in matches: # 当最近距离跟次近距离的比值小于ratio值时,保留此匹配对 if len(m) == 2 and m[0].distance < m[1].distance * 0.75: # 存储两个点在featuresA, featuresB中的索引值 good.append((m[0].trainIdx, m[0].queryIdx))# 当筛选后的匹配对大于4时,计算视角变换矩阵if len(good) > 4: # 获取匹配对的点坐标 ptsA = np.float32([kpsA[i] for (_, i) in good]) ptsB = np.float32([kpsB[i] for (i, _) in good]) # 计算视角变换矩阵 H, status = cv2.findHomography(ptsA, ptsB, cv2.RANSAC,4.0)# 匹配两张图片的所有特征点,返回匹配结果M = (matches, H, status)# 如果返回结果为空,没有匹配成功的特征点,退出程序if M is None: print("无匹配结果") sys.exit()# 否则,提取匹配结果# H是3x3视角变换矩阵(matches, H, status) = M# 将图片A进行视角变换,result是变换后图片result = cv2.warpPerspective(imageA, H, (imageA.shape[1] + imageB.shape[1], imageA.shape[0]))# 将图片B传入result图片最左端result[0:imageB.shape[0], 0:imageB.shape[1]] = imageBshow('res',result)print(result.shape)

效果:   可以发现直接拼接虽然可以拼接但是在拼接的地方会有一条很明显的缝隙,不过直接拼接的速度比较快只用了2点多秒。

加权处理

  我们通常使用alpha因子,通常称为alpha通道,它在中心像素处的值为1,在与边界像素线性递减后变为0。当输出拼接图像中至少有两幅重叠图像时,我们将使用如下的alpha值来计算其中一个像素处的颜色:假设两个图像,在输出图像中重叠;每个像素点在图像,其中(R,G,B)是像素的颜色值,我们将在缝合后的输出图像中计算(x, y)的像素值: 代码如下:

import cv2import numpy as npfrom matplotlib import pyplot as pltimport timedef show(name,img): cv2.imshow(name, img) cv2.waitKey(0) cv2.destroyAllWindows()MIN = 10FLANN_INDEX_KDTREE = 0starttime = time.time()img1 = cv2.imread('zuo.jpg') #queryimg2 = cv2.imread('you.jpg') #trainimageA = cv2.resize(img1,(0,0),fx=0.2,fy=0.2)imageB = cv2.resize(img2,(0,0),fx=0.2,fy=0.2)surf=cv2.xfeatures2d.SIFT_create()#可以改为SIFT#sift = cv2.SIFT_create()kp1,descrip1 = sift.detectAndCompute(imageA,None)kp2,descrip2 = sift.detectAndCompute(imageB,None)#创建字典indexParams = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)searchParams = dict(checks=50)flann=cv2.FlannBasedMatcher(indexParams,searchParams)match=flann.knnMatch(descrip1,descrip2,k=2)good=[]#过滤特征点for i,(m,n) in enumerate(match): if(m.distance<0.75*n.distance): good.append(m)# 当筛选后的匹配对大于10时,计算视角变换矩阵if len(good) > MIN: src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1,1,2) ano_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1,1,2) M,mask = cv2.findHomography(src_pts,ano_pts,cv2.RANSAC,5.0) warpImg = cv2.warpPerspective(imageB, np.linalg.inv(M), (imageA.shape[1]+imageB.shape[1], imageB.shape[0])) direct=warpImg.copy() direct[0:imageA.shape[0], 0:imageB.shape[1]] =imageA simple=time.time()show('res',warpImg)rows,cols=imageA.shape[:2]print(rows)print(cols)for col in range(0,cols): # 开始重叠的最左端 if imageA[:, col].any() and warpImg[:, col].any(): left = col print(left) breakfor col in range(cols-1, 0, -1): #重叠的最右一列 if imageA[:, col].any() and warpImg[:, col].any(): right = col print(right) break#加权处理res = np.zeros([rows, cols, 3], np.uint8)for row in range(0, rows): for col in range(0, cols): if not imageA[row, col].any(): # 如果没有原图,用旋转的填充 res[row, col] = warpImg[row, col] elif not warpImg[row, col].any(): res[row, col] = imageA[row, col] else: srcImgLen = float(abs(col - left)) testImgLen = float(abs(col - right)) alpha = srcImgLen / (srcImgLen + testImgLen) res[row, col] = np.clip(imageA[row, col] * (1 - alpha) + warpImg[row, col] * alpha, 0, 255)warpImg[0:imageA.shape[0], 0:imageA.shape[1]]=resshow('res',warpImg)final=time.time()print(final-starttime)

效果:   可以发现经过加权处理融合后的图片要比直接拼接效果要好,但是时间用了差不多16秒,而且还是有一条黑缝,目前还没有找到解决的办法,有好方法的友友们可以在评论区留意哟。

总结

  除了加权处理的方法外,还可以尝试用羽化和拉普拉斯金字塔等方法来实现图像拼接,这里给出实现的原理,方便以后尝试。 羽化(原文连接):  加载原始图像并找到轮廓。

 模糊原始图像并将其保存在不同的变量中。

 创建一个空的蒙版并在其上绘制检测到的轮廓。

 使用 np.where() 方法从要模糊值的蒙版(轮廓)中选择像素,然后替换它。

拉普拉斯金字塔(原文连接);

本文链接地址:https://www.jiuchutong.com/zhishi/300365.html 转载请保留说明!

上一篇:这几个SQL语法的坑,你踩过吗(这几个sql语法的区别)

下一篇:《花雕学AI》06:抢先体验ChatGPT的九个国内镜像站之试用与综合评测(花雕典故)

  • 销售给学员的教材是否要缴纳增值税?
  • 固定资产清理费用为什么有进项税额
  • 个体工商户发票额度
  • 税务外管证取消了吗
  • 已认证的发票如何冲红步骤
  • 转让企业全部产权属于增值税征税范围。A对B错
  • 独立核算的分公司怎么报税
  • 进项税未抵扣完怎么结转
  • 长期待摊费用属于无形资产吗
  • 向非关联企业捐赠现金会计分录
  • 公司新装宽带怎么做账?
  • 物业 免物业费
  • 将自建的厂房对外转让需要缴纳增值税吗
  • 固定资产报废后怎么处理
  • 支付房屋租金计入什么会计科目
  • 单位参加城镇职工基本养老保险缴费基数怎么填写
  • 安装工程中安装工程与市政路灯工程界定不正确的是
  • 招行理财产品哪些可靠
  • 补记以前年度收入在报表中怎么处理
  • 企业爱心捐赠可以抵相应的税吗
  • 为什么应收和预收在一起
  • 企业收取的会员费当无法继续提供服务能退吗?
  • vue移动端预览pdf
  • 若依框架介绍
  • PHP:pg_lo_tell()的用法_PostgreSQL函数
  • 以固定资产换入无形资产
  • tim模块
  • PHP:mcrypt_module_open()的用法_Mcrypt函数
  • 带息应收票据会计处理
  • 下岗再就业有什么优惠政策
  • 公司外部人员的差旅费入什么科目
  • 挂靠的项目怎么做账
  • 动产租赁增值税税率最新
  • grid 框架
  • 空调采购及安装税率
  • Vue Element UI 中 el-table 树形数据 tree-props 多层级使用避坑
  • css转换器
  • JavaScript DOM API的使用
  • 一般纳税人和小微企业的区别
  • 投标代理费是什么意思
  • 企业公章的使用和管理规定
  • 其他综合收益涉及到的业务
  • 如何用wordpress
  • 投资性房地产由成本模式转为公允价值模式
  • 个体户给对方公司开发票会怎样
  • 年终奖不属于工资有法律依据吗
  • 差旅费跨年报销违反什么规定
  • 营业收入的构成分析主要包括
  • 水电费没有发票吗
  • 汇兑损益财务费用借方
  • 单位收走三方协议
  • 银行承兑汇票利息归谁
  • 金税盘的初始密码一般是多少
  • 资金股东占股比例
  • 借款费用应如何入账
  • Windows Server 2016技术预览版第四版系统截图曝光 编号10565
  • win7怎么添加设备
  • centos怎么样
  • squid ssh
  • wrme.exe是什么
  • mac电脑文件夹怎么重命名
  • xp系统进程
  • windows7怎
  • win8系统开机界面
  • Linux /bin, /sbin, /usr/bin, /usr/sbin 区别
  • win10下安装office2007
  • windows7禁止开机启动
  • linux单个文件夹文件数量
  • windows7怎
  • win10 rs4
  • win10 cpu使用率高怎么办
  • win7系统出现蓝屏
  • nodejs require 路径查找
  • Node.js中的construct构造函数
  • Linux查看所有用户和密码
  • 多态和封装的区别
  • document.all.value
  • node-js
  • 税控盘开票怎么添加新商品
  • 深圳国税电子税务局入口
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设