位置: IT常识 - 正文

Python数学建模系列(一):规划问题之线性规划(python进行数学建模)

编辑:rootadmin
Python数学建模系列(一):规划问题之线性规划 文章目录前言线性规划样例1:求解下列线性规划问题scipy库求解样例2:求解下列线性规划问题pulp库求解样例3.运输问题说明结语前言

推荐整理分享Python数学建模系列(一):规划问题之线性规划(python进行数学建模),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:python数学建模资料,python进行数学建模,python数学建模基础教程,python小白的数学建模课,python数学建模基础教程,python高数建模,python小白的数学建模课,python数学建模基础教程,内容如对您有帮助,希望把文章链接给更多的朋友!

Hello!小伙伴! 非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~   自我介绍 ଘ(੭ˊᵕˋ)੭ 昵称:海轰 标签:程序猿|C++选手|学生 简介:因C语言结识编程,随后转入计算机专业,有幸拿过一些国奖、省奖…已保研。目前正在学习C++/Linux/Python 学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语!   初学Python 小白阶段 文章仅作为自己的学习笔记 用于知识体系建立以及复习 题不在多 学一题 懂一题 知其然 知其所以然!   本文仅从Pyhton如何解决建模问题出发 未对建模思路等进行深一步探索

线性规划

​ 线性规划求解需要清晰两部分,目标函数(max, min) 和 约束条件 ,求解前应转化为标准形式:

样例1:求解下列线性规划问题

maxz=2x1+3x2−5x3max z = 2x_1 + 3x_2 - 5x_3maxz=2x1​+3x2​−5x3​ s.t.={x1+x2+x3=72x1−5x2+x3>=10x1+3x2+x3<=12x1,x2,x3>=s.t. = \begin{cases} x_1 + x_2 + x_3 = 7 \\ 2x_1 - 5x_2 + x_3 >= 10\\ x_1 + 3x_2 + x_3 <= 12\\ x_1,x_2,x_3 >= 0 \end{cases}s.t.=⎩⎪⎪⎪⎨⎪⎪⎪⎧​x1​+x2​+x3​=72x1​−5x2​+x3​>=10x1​+3x2​+x3​<=12x1​,x2​,x3​>=0​

scipy库求解

涉及知识点

optimize.linprog

Demo代码

from scipy import optimizeimport numpy as npc = np.array([2,3,-5])A = np.array([[-2,5,-1],[1,3,1]])B = np.array([-10,12])Aeq = np.array([[1,1,1]])Beq = np.array([7])res = optimize.linprog(-c,A,B,Aeq,Beq)res

运行结果

注:x结果为array数组,从左到右依次表示x1 x2 x3…

对很大/小的数不使用科学计数法 np.set_printoptions(suppress=True)

Demo代码

from scipy import optimizeimport numpy as npnp.set_printoptions(suppress=True)c = np.array([2,3,-5])A = np.array([[-2,5,-1],[1,3,1]])B = np.array([-10,12])Aeq = np.array([[1,1,1]])Beq = np.array([7])res = optimize.linprog(-c,A,B,Aeq,Beq)res

运行结果

样例2:求解下列线性规划问题Python数学建模系列(一):规划问题之线性规划(python进行数学建模)

pulp库求解

设计知识点

LpProblem(name=‘NoName’, sense=LpMinimize)solve(solver=None, **kwargs)LpVariable(name, lowBound=None, upBound=None, cat=‘Continuous’, e=None)

Demo代码

import pulp as pp# 目标函数的系数z = [2, 3, 1]a = [[1, 4, 2], [3, 2, 0]]b = [8,6]aeq = [[1,2,4]]beq = [101]# 确定最大最小化问题,当前确定的是最大化问题m = pp.LpProblem(sense=pp.LpMaximize)# 定义三个变量放到列表中x = [pp.LpVariable(f'x{i}', lowBound=0) for i in [1, 2, 3]]# 定义目标函数,并将目标函数加入求解的问题中m += pp.lpDot(z, x) # lpDot 用于计算点积# 设置比较条件for i in range(len(a)): m += (pp.lpDot(a[i], x) >= b[i])# 设置相等条件for i in range(len(aeq)): m += (pp.lpDot(aeq[i], x) == beq[i])# 求解m.solve()# 输出结果print(f'优化结果:{pp.value(m.objective)}')print(f'参数取值:{[pp.value(var) for var in x]}')

运行结果:

注:

最优结果为202x1 = 101 x2=0 x3=0样例3.运输问题

Demo代码

import pulpimport numpy as npfrom pprint import pprintdef transportation_problem(costs, x_max, y_max): row = len(costs) col = len(costs[0]) prob = pulp.LpProblem('Transportation Proble',sense=pulp.LpMaximize) var = [[pulp.LpVariable(f'x{i}{j}',lowBound=0,cat=pulp.LpInteger) for j in range(col)] for i in range(row)] # 转为一维 flatten = lambda x:[y for l in x for y in flatten(l)] if type(x) is list else [x] prob += pulp.lpDot(flatten(var),costs.flatten()) for i in range(row): prob += (pulp.lpSum(var[i]) <= x_max[i]) for j in range(col): prob += (pulp.lpSum([var[i][j] for i in range(row)]) <= y_max[j]) prob.solve() return {'objective':pulp.value(prob.objective),'var':[[pulp.value(var[i][j]) for j in range(col)] for i in range(row)]}costs = np.array([[500,550,630,1000,800,700], [800,700,600,950,900,930], [1000,960,840,650,600,700], [1200,1040,980,860,880,780]])max_plant = [76,88,96,40]max_cultivation = [42,56,44,39,60,59]res = transportation_problem(costs, max_plant, max_cultivation)print(f'最大值为{res["objective"]}')print("各个变量的取值为:")pprint(res['var'])

运行结果:

说明

运行环境:Vs Code

结语

学习来源:B站及其课堂PPT,对其中代码进行了复现

链接:https://www.bilibili.com/video/BV12h411d7Dm? from=search&seid=5685064698782810720

文章仅作为学习笔记,记录从0到1的一个过程

希望对您有所帮助,如有错误欢迎小伙伴指正~

我是 海轰ଘ(੭ˊᵕˋ)੭

如果您觉得写得可以的话,请点个赞吧

谢谢支持 ❤️

本文链接地址:https://www.jiuchutong.com/zhishi/300544.html 转载请保留说明!

上一篇:从0到1搭建Vue项目(webpack版)(vue从0创建一个项目)

下一篇:用PyTorch构建基于卷积神经网络的手写数字识别模型(pytorch jit)

  • 企业进口葡萄酒也要缴纳消费税吗
  • 什么是调账的依据
  • 发工资可以用个税抵扣吗
  • 收到投资款需要缴纳增值税吗
  • 存货损失
  • 航运(集团)招聘
  • 公司转让会计分录
  • 小规模纳税人计提增值税
  • 增值税申报表更正情况说明怎么写
  • 汇算清缴期间费用社保填哪里
  • 进货有商业折扣商品怎么入库
  • 部分退货退款剩下的钱什么时候给卖家
  • 竞价服务费放在哪个会计科目?
  • 员工入职第一个月交社保吗
  • 耕地占用税和契税什么时候交
  • 个体工商户在税法规定的享有免税优惠的期限内
  • 高亮!这些发票不能抵扣增值税
  • 包装物计入科目
  • 支付给供应商的现金属于什么活动
  • 取得带息应收票据时,企业应于期末计算票据利息
  • 记账凭证做完之后干什么
  • 车船税没发票只在备注可以计入管理费用吗
  • 会计新手入门
  • 去年的财务费用忘记帐能入今年的账吗?
  • 销售回购会计分录
  • 工资计提金额
  • 商家收白条
  • 如何正确安装锯条
  • 发生固定资产了怎么做账
  • 支付设备维修费用计入什么科目
  • 知识产权?
  • win11怎么用win10界面
  • 在win7系统中文件属性有哪些
  • php数组函数,选班长
  • 发票抵税是怎么申报的
  • php递归函数详解
  • php中\n
  • java pdf生成工具
  • vue3动态路由权限
  • 快递行业规矩
  • 银行存款余额调节表是不是原始凭证
  • 分享2款CSS3母亲节主题寄语文字动画特效
  • 应收账款科目有哪些类别
  • 进项税额转出会影响当期纳税吗?
  • discuzcms
  • 应付账款坏账损失的会计分录
  • 借款给别的公司怎么做账
  • 小规模未达到起征点申报表怎么填
  • 收到的发票未抵税怎么办
  • 发票 抬头个人
  • 如何理解什么是半殖民地半封建社会
  • 申报和做账必须一致吗
  • 取得房租发票的租赁费可以抵税吗
  • 费用分割单是什么
  • 车间劳务费计入什么费用
  • 附条件的行政行为有哪些
  • 银行账户维护费收费标准
  • 自产产品赠送会计处理
  • 总账和明细账的保管期限
  • 研发费用占销售的比例
  • 成本利润率计算销售价格
  • 一分钟教你
  • sql server常规错误
  • linux路由是干嘛的
  • wps2019视频
  • 如何禁止mac adobe acrobat联网
  • OS X Yosemite系统怎么制作u盘安装盘
  • winxp win10哪个快
  • 苹果系统安装系统
  • linux打包命令tar打包目录结构
  • 可序列化的类被标记为
  • awk入门
  • python字符串strip的作用
  • java的file类的常用操作
  • php常用函数200个
  • 用python画roc曲线
  • 沈阳新公司办理社保流程
  • 丰田2.0和2.5混动发动机
  • 资源税什么时候征收
  • 盘州市税务局党组成员图片
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设