位置: IT常识 - 正文

使用Pytorch实现深度学习的主要流程(pytorch技巧)

编辑:rootadmin
使用Pytorch实现深度学习的主要流程 一、使用Pytorch实现深度学习的主要流程

推荐整理分享使用Pytorch实现深度学习的主要流程(pytorch技巧),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:pytorch怎么用,pytorch例程,pytorch 简单例子,pytorch教程,pytorch基本操作,pytorch例程,pytorch怎么用,pytorch怎么用,内容如对您有帮助,希望把文章链接给更多的朋友!

使用Pytorch进行深度学习的实现流程主要包含如下几个部分: 1、预处理、后处理并确认网络的输入和输出 2、创建Dataset 3、创建DataLoader 4、创建网络模型 5、定义正向传播函数(forward) 6、定义损失函数 7、设置最优化算法 8、进行训练和验证 9、达到标准保存模型 10、加载模型使用测试数据进行测试 在使用Pytorch实现深度学习的整体流程中,首先需要对准备实现的深度学习算法从整体上进行把握。即对预处理以及后处理,网络模型的输入和输出进行确认。 创建Dataset就是将输入数据和与其对应的标签组成配对数据进行保存的类。这里将用于处理数据的预处理类的实例指定到Dataset中,并设定其在从文件中读取对象数据时,自动对输入数据进行预处理。 接下来是创建Dataloader,DataLoader是用来设定从Dataset中读取数据的具体方法的类。在深度学习中,通常都是采用小批次学习的方式,将多个数据同时从Dataset中取出,并传递给神经网络进行学习训练,DataLoader就是负责简化从Dataset中取出小批次数据这一操作的类,需要分别创建好用于训练数据以及验证数据的Dataloader。 接下来是创建网络模型,创建网络模型共有三种方式,第一种从零开始实现整个网络模型;第二种是直接载入已经训练好的网络模型,第三种是以现有训练好的网络模型为基础,将其改造为自己需要的模型。在深度学习实际应用中,大多数情况是以训练好的网络模型为基础,将其改造成符合自身需要的模型。 在成功创建网络模型之后,就需要定义网络模型的正向传播函数,forward函数,接下来要做的就是定义用于将误差值进行反向传播的损失函数,对于解决不同的任务会设置不同的损失函数。 下一步就是设定在对网络模型的连接参数进行训练时使用的优化算法,通过误差的反向传播,可以对连接参数的误差对应的梯度进行计算。优化算法就是指如何根据这一梯度值计算出连接参数的修正量具体算法。常用的优化算法有 Adam、SGD。 通过上述步骤,就完成了进行深度学习所需要的所有设置,接下来进行实际的学习和验证操作。通常以epoch为单位,对训练数据的性能和验证数据的性能进行比较,如果验证数据的性能停止提升,之后的训练都会陷入到过拟合状态,因此需要及时停止训练,提前终止网络学习的方法又称为early stopping。 学习完成之后保存我们训练得到的最优模型,之后加载模型进行推理。

二、代码实战2.1、软件包的导入以及初始设置# 实现代码的初始设置import globimport os.path as ospimport randomimport numpy as npimport jsonfrom PIL import Imagefrom tqdm import tqdmimport matplotlib.pyplot as pltimport torchimport torch.nn as nnimport torch.optim as optimimport torch.utils.data as dataimport torchvisionfrom torchvision import models, transformstorch.manual_seed(1234)np.random.seed(1234)random.seed(1234)2.2、创建Dataset# 创建DataSetclass ImageTransform(): def __init__(self, resize, mean, std): self.data_transform = { 'train': transforms.Compose([ transforms.RandomResizedCrop(resize, scale=(0.5, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean, std) ]), 'val': transforms.Compose([ transforms.Resize(resize), transforms.CenterCrop(resize), transforms.ToTensor(), transforms.Normalize(mean, std) ]) } def __call__(self, img, phase='train'): return self.data_transform[phase](img)2.3、查看图像预处理前后的对比# 1.读取图像image_file_path = './data/goldenretriever-3724972_1280.jpg'img = Image.open(image_file_path)# 2.显示原图# img.show()plt.imshow(img)plt.show()# 3.预处理size = 224mean = (0.485, 0.456, 0.406)std = (0.229, 0.224, 0.225)transform = ImageTransform(size, mean, std)img_transformed = transform(img, phase='train')img_transformed = img_transformed.numpy().transpose((1, 2, 0))img_transformed = np.clip(img_transformed, 0, 1)plt.imshow(img_transformed)plt.show()

2.4、创建用于保存图片文件路径的列表变量# 用于保存蚂蚁和蜜蜂的图片文件路径列表变量def make_data_path_list(phase='train'): root_path = './data/hymenoptera_data/' target_path = osp.join(root_path + phase + '/**/*.jpg') # print(target_path) # ./data/hymenoptera_data/train/**/*.jpg # ./data/hymenoptera_data/val/**/*.jpg path_list = [] for path in glob.glob(target_path): path_list.append(path) return path_listtrain_list = make_data_path_list(phase='train')val_list = make_data_path_list(phase='val')print(train_list[:5])使用Pytorch实现深度学习的主要流程(pytorch技巧)

[‘./data/hymenoptera_data/train/bees/2638074627_6b3ae746a0.jpg’, ‘./data/hymenoptera_data/train/bees/507288830_f46e8d4cb2.jpg’, ‘./data/hymenoptera_data/train/bees/2405441001_b06c36fa72.jpg’, ‘./data/hymenoptera_data/train/bees/2962405283_22718d9617.jpg’, ‘./data/hymenoptera_data/train/bees/446296270_d9e8b93ecf.jpg’]

2.5、创建图片组成的Dataset# 构建datasetclass HymenopteraDataset(data.Dataset): def __init__(self, file_list, transform=None, phase='train'): self.file_list = file_list self.transform = transform self.phase = phase def __len__(self): return len(self.file_list) def __getitem__(self, index): img_path = self.file_list[index] img = Image.open(img_path) img_transformed = self.transform(img, self.phase) if self.phase == 'train': label = img_path[30:34] elif self.phase == 'val': label = img_path[28: 32] if label == 'ants': label = 0 elif label == 'bees': label = 1 return img_transformed, labeltrain_dataset = HymenopteraDataset( file_list=train_list, transform=ImageTransform(size, mean, std), phase='train')val_dataset = HymenopteraDataset( file_list=val_list, transform=ImageTransform(size, mean, std), phase='val')# 查看图片和标签index = 0print(train_dataset.__getitem__(index)[0].size())print(train_dataset.__getitem__(index)[1])

torch.Size([3, 224, 224]) 1

2.6、创建Dataloader# 创建DataLoaderbatch_size = 32train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=batch_size, shuffle=True)val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=batch_size, shuffle=False)dataloaders_dict = {'train': train_loader, 'val': val_loader}batch_iterator = iter(dataloaders_dict['train'])inputs, labels = next(batch_iterator)print(inputs.size())print(labels)

torch.Size([32, 3, 224, 224]) tensor([0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1])

2.7、创建网络模型# 创建网络模型use_pretrained = Truenet = models.vgg16(pretrained=use_pretrained)print(net)net.classifier[6] = nn.Linear(in_features=4096, out_features=2)print(net)net.train()print('网络设置完毕: 载入已经学习完毕的权重,并设置为训练模式')

VGG( (features): Sequential( (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): ReLU(inplace=True) (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (3): ReLU(inplace=True) (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (6): ReLU(inplace=True) (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (8): ReLU(inplace=True) (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (11): ReLU(inplace=True) (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (13): ReLU(inplace=True) (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (15): ReLU(inplace=True) (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (18): ReLU(inplace=True) (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (20): ReLU(inplace=True) (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (22): ReLU(inplace=True) (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (25): ReLU(inplace=True) (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (27): ReLU(inplace=True) (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (29): ReLU(inplace=True) (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) (avgpool): AdaptiveAvgPool2d(output_size=(7, 7)) (classifier): Sequential( (0): Linear(in_features=25088, out_features=4096, bias=True) (1): ReLU(inplace=True) (2): Dropout(p=0.5, inplace=False) (3): Linear(in_features=4096, out_features=4096, bias=True) (4): ReLU(inplace=True) (5): Dropout(p=0.5, inplace=False) (6): Linear(in_features=4096, out_features=1000, bias=True) ) ) VGG( (features): Sequential( (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): ReLU(inplace=True) (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (3): ReLU(inplace=True) (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (6): ReLU(inplace=True) (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (8): ReLU(inplace=True) (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (11): ReLU(inplace=True) (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (13): ReLU(inplace=True) (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (15): ReLU(inplace=True) (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (18): ReLU(inplace=True) (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (20): ReLU(inplace=True) (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (22): ReLU(inplace=True) (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (25): ReLU(inplace=True) (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (27): ReLU(inplace=True) (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (29): ReLU(inplace=True) (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) (avgpool): AdaptiveAvgPool2d(output_size=(7, 7)) (classifier): Sequential( (0): Linear(in_features=25088, out_features=4096, bias=True) (1): ReLU(inplace=True) (2): Dropout(p=0.5, inplace=False) (3): Linear(in_features=4096, out_features=4096, bias=True) (4): ReLU(inplace=True) (5): Dropout(p=0.5, inplace=False) (6): Linear(in_features=4096, out_features=2, bias=True) ) ) 网络设置完毕: 载入已经学习完毕的权重,并设置为训练模式

2.8、定义损失函数# 定义损失函数criterion = nn.CrossEntropyLoss()2.9、设定最优化算法# 设定最优化算法params_to_update = []# print(net.named_parameters())update_param_names = ['classifier.6.weight', 'classifier.6.bias']for name, param in net.named_parameters(): # print(name) # print(param) if name in update_param_names: param.requires_grad = True params_to_update.append(param) print(name) else: param.requires_grad = Falseprint('=========================')print(params_to_update)# 设置最优化算法optimizer = optim.SGD(params=params_to_update, lr=0.001, momentum=0.9)print(optimizer)classifier.6.weight classifier.6.bias

[Parameter containing: tensor([[-0.0048, 0.0072, -0.0081, …, 0.0003, -0.0040, 0.0048], [ 0.0051, 0.0072, -0.0154, …, 0.0054, 0.0152, 0.0083]], requires_grad=True), Parameter containing: tensor([ 0.0108, -0.0054], requires_grad=True)] SGD ( Parameter Group 0 dampening: 0 lr: 0.001 momentum: 0.9 nesterov: False weight_decay: 0 )

2.10、训练和验证# 学习和验证的实行def train_model(net, dataloaders_dict, criterion, optimizer, num_epochs): for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch + 1, num_epochs)) print('--------------------') for phase in ['train', 'val']: if phase == 'train': net.train() else: net.eval() epoch_loss = 0.0 epoch_corrects = 0 if epoch == 0 and phase == 'train': continue for inputs, labels in tqdm(dataloaders_dict[phase]): optimizer.zero_grad() with torch.set_grad_enabled(phase == 'train'): outputs = net(inputs) loss = criterion(outputs, labels) _, preds = torch.max(outputs, 1) if phase == 'train': loss.backward() optimizer.step() epoch_loss += loss.item() * inputs.size(0) epoch_corrects += torch.sum(preds == labels.data) epoch_loss = epoch_loss / len(dataloaders_dict[phase].dataset) epoch_acc = epoch_corrects.double() / len(dataloaders_dict[phase].dataset) print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))2.11、主函数if __name__ == '__main__': num_epochs = 2 train_model(net, dataloaders_dict, criterion, optimizer, num_epochs=num_epochs)

2.12、保存和加载网络模型 # 保存和读取训练完毕的网络 # save_path = './weights_fine_tuning.pth' # torch.save(net.state_dict(), save_path) # 加载训练好的网络参数 load_path = './weights_fine_tuning.pth' load_weights = torch.load(load_path) net.load_state_dict(load_weights) print(net)
本文链接地址:https://www.jiuchutong.com/zhishi/300555.html 转载请保留说明!

上一篇:使用el-upload组件实现递归多文件上传(elementui的upload组件详解)

下一篇:vue3 响应式 API 之 ref(vue3 响应式ui框架)

  • 零售环节征收消费税标准
  • 利润表主营业务成本怎么算
  • 发票在系统里作用大吗
  • 财务报表一季度销售大福下降
  • 怎么在电子税务局添加银行账户
  • 今年成立的公司,残保金是否要申报
  • 广告业务增值税税率
  • 税收专用缴款书
  • 一般纳税人临时工工资怎么入账
  • 当月作废的专票需要开负数发票么
  • 跨年度发票退回如何记账
  • 税控盘维护费优惠政策
  • 印花税如何进行税种认定
  • 转增股本是股票股利吗
  • 劳务派遣差额征税政策
  • 小规模税局代增值税专用发票怎么交税
  • 城市维护建设税减免税优惠政策
  • 赠与房产再出售税费
  • 企业纳税申报的流程
  • 小规模公司减免的增值税怎么做账
  • 工程公司项目经理年薪一般多少
  • 差额增值税发票和全额增值税发票
  • 跨年的发票冲红
  • 鸿蒙实用工具在哪里
  • 上月开的发票会计漏做帐本月应如何补做账?
  • lnmgr.exe是什么
  • 资本金投资回报率
  • vue生成二维码分享
  • php静态方法调用
  • 税务函调异常怎么处理
  • 从univ.txt文件中去掉机构名称
  • 进项发票数据导出
  • 出租的厂房折旧记哪里
  • c语言fgets函数用法stdin
  • js在数组中查找指定元素
  • php 操作mongodb
  • 本月进项税额可以下月抵扣吗
  • 私车公用可以报销哪些费用
  • 固定资产会计上与税法上提折旧时间
  • 材料帐怎么记
  • 工资挂账怎样做账
  • 给客户优惠货款怎么写
  • 水利工程施工税率是多少
  • 选择简易计税方法
  • 销售回款率怎么计算,麻烦知道的告诉我,11
  • 年底计提利息会计分录
  • sqlserver分页查询
  • linux rpm文件怎么安装
  • windows7打游戏会卡怎么办
  • 怎样备份微信聊天记录到新手机
  • win32api.exe - win32api是什么进程
  • ubuntu系统怎么开机
  • config是什么文件夹
  • w10 2021年更新
  • win7文件夹选项在哪里打开
  • win1021h2版本千万别更新
  • cocos内存管理
  • [置顶]游戏名 TentacleLocker
  • jquery验证码
  • 电脑windows自动关闭
  • 文件上传的三个条件
  • 批处理for命令修改后缀名
  • python整数数字
  • 用javascript
  • shell命令读取文件并新增另一文件到指定行
  • 深入学习习总书记系列讲话精神
  • javascript网页游戏制作教程
  • jq filter过滤
  • itween常用方法
  • wpf 设置鼠标样式
  • jQuery 获取跨域XML(RSS)数据的相关总结分析
  • python flask框架 web服务器
  • 车位办房产证需交多少税
  • 淄博市地税局局长
  • 火药概念股有哪些
  • 税务备案表银行留存
  • 工会经费怎么缴付
  • 地税管理员是干什么的
  • 建筑业统一发票税率
  • 南通地税电话号码
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设