位置: IT常识 - 正文

使用Pytorch实现深度学习的主要流程(pytorch技巧)

编辑:rootadmin
使用Pytorch实现深度学习的主要流程 一、使用Pytorch实现深度学习的主要流程

推荐整理分享使用Pytorch实现深度学习的主要流程(pytorch技巧),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:pytorch怎么用,pytorch例程,pytorch 简单例子,pytorch教程,pytorch基本操作,pytorch例程,pytorch怎么用,pytorch怎么用,内容如对您有帮助,希望把文章链接给更多的朋友!

使用Pytorch进行深度学习的实现流程主要包含如下几个部分: 1、预处理、后处理并确认网络的输入和输出 2、创建Dataset 3、创建DataLoader 4、创建网络模型 5、定义正向传播函数(forward) 6、定义损失函数 7、设置最优化算法 8、进行训练和验证 9、达到标准保存模型 10、加载模型使用测试数据进行测试 在使用Pytorch实现深度学习的整体流程中,首先需要对准备实现的深度学习算法从整体上进行把握。即对预处理以及后处理,网络模型的输入和输出进行确认。 创建Dataset就是将输入数据和与其对应的标签组成配对数据进行保存的类。这里将用于处理数据的预处理类的实例指定到Dataset中,并设定其在从文件中读取对象数据时,自动对输入数据进行预处理。 接下来是创建Dataloader,DataLoader是用来设定从Dataset中读取数据的具体方法的类。在深度学习中,通常都是采用小批次学习的方式,将多个数据同时从Dataset中取出,并传递给神经网络进行学习训练,DataLoader就是负责简化从Dataset中取出小批次数据这一操作的类,需要分别创建好用于训练数据以及验证数据的Dataloader。 接下来是创建网络模型,创建网络模型共有三种方式,第一种从零开始实现整个网络模型;第二种是直接载入已经训练好的网络模型,第三种是以现有训练好的网络模型为基础,将其改造为自己需要的模型。在深度学习实际应用中,大多数情况是以训练好的网络模型为基础,将其改造成符合自身需要的模型。 在成功创建网络模型之后,就需要定义网络模型的正向传播函数,forward函数,接下来要做的就是定义用于将误差值进行反向传播的损失函数,对于解决不同的任务会设置不同的损失函数。 下一步就是设定在对网络模型的连接参数进行训练时使用的优化算法,通过误差的反向传播,可以对连接参数的误差对应的梯度进行计算。优化算法就是指如何根据这一梯度值计算出连接参数的修正量具体算法。常用的优化算法有 Adam、SGD。 通过上述步骤,就完成了进行深度学习所需要的所有设置,接下来进行实际的学习和验证操作。通常以epoch为单位,对训练数据的性能和验证数据的性能进行比较,如果验证数据的性能停止提升,之后的训练都会陷入到过拟合状态,因此需要及时停止训练,提前终止网络学习的方法又称为early stopping。 学习完成之后保存我们训练得到的最优模型,之后加载模型进行推理。

二、代码实战2.1、软件包的导入以及初始设置# 实现代码的初始设置import globimport os.path as ospimport randomimport numpy as npimport jsonfrom PIL import Imagefrom tqdm import tqdmimport matplotlib.pyplot as pltimport torchimport torch.nn as nnimport torch.optim as optimimport torch.utils.data as dataimport torchvisionfrom torchvision import models, transformstorch.manual_seed(1234)np.random.seed(1234)random.seed(1234)2.2、创建Dataset# 创建DataSetclass ImageTransform(): def __init__(self, resize, mean, std): self.data_transform = { 'train': transforms.Compose([ transforms.RandomResizedCrop(resize, scale=(0.5, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean, std) ]), 'val': transforms.Compose([ transforms.Resize(resize), transforms.CenterCrop(resize), transforms.ToTensor(), transforms.Normalize(mean, std) ]) } def __call__(self, img, phase='train'): return self.data_transform[phase](img)2.3、查看图像预处理前后的对比# 1.读取图像image_file_path = './data/goldenretriever-3724972_1280.jpg'img = Image.open(image_file_path)# 2.显示原图# img.show()plt.imshow(img)plt.show()# 3.预处理size = 224mean = (0.485, 0.456, 0.406)std = (0.229, 0.224, 0.225)transform = ImageTransform(size, mean, std)img_transformed = transform(img, phase='train')img_transformed = img_transformed.numpy().transpose((1, 2, 0))img_transformed = np.clip(img_transformed, 0, 1)plt.imshow(img_transformed)plt.show()

2.4、创建用于保存图片文件路径的列表变量# 用于保存蚂蚁和蜜蜂的图片文件路径列表变量def make_data_path_list(phase='train'): root_path = './data/hymenoptera_data/' target_path = osp.join(root_path + phase + '/**/*.jpg') # print(target_path) # ./data/hymenoptera_data/train/**/*.jpg # ./data/hymenoptera_data/val/**/*.jpg path_list = [] for path in glob.glob(target_path): path_list.append(path) return path_listtrain_list = make_data_path_list(phase='train')val_list = make_data_path_list(phase='val')print(train_list[:5])使用Pytorch实现深度学习的主要流程(pytorch技巧)

[‘./data/hymenoptera_data/train/bees/2638074627_6b3ae746a0.jpg’, ‘./data/hymenoptera_data/train/bees/507288830_f46e8d4cb2.jpg’, ‘./data/hymenoptera_data/train/bees/2405441001_b06c36fa72.jpg’, ‘./data/hymenoptera_data/train/bees/2962405283_22718d9617.jpg’, ‘./data/hymenoptera_data/train/bees/446296270_d9e8b93ecf.jpg’]

2.5、创建图片组成的Dataset# 构建datasetclass HymenopteraDataset(data.Dataset): def __init__(self, file_list, transform=None, phase='train'): self.file_list = file_list self.transform = transform self.phase = phase def __len__(self): return len(self.file_list) def __getitem__(self, index): img_path = self.file_list[index] img = Image.open(img_path) img_transformed = self.transform(img, self.phase) if self.phase == 'train': label = img_path[30:34] elif self.phase == 'val': label = img_path[28: 32] if label == 'ants': label = 0 elif label == 'bees': label = 1 return img_transformed, labeltrain_dataset = HymenopteraDataset( file_list=train_list, transform=ImageTransform(size, mean, std), phase='train')val_dataset = HymenopteraDataset( file_list=val_list, transform=ImageTransform(size, mean, std), phase='val')# 查看图片和标签index = 0print(train_dataset.__getitem__(index)[0].size())print(train_dataset.__getitem__(index)[1])

torch.Size([3, 224, 224]) 1

2.6、创建Dataloader# 创建DataLoaderbatch_size = 32train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=batch_size, shuffle=True)val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=batch_size, shuffle=False)dataloaders_dict = {'train': train_loader, 'val': val_loader}batch_iterator = iter(dataloaders_dict['train'])inputs, labels = next(batch_iterator)print(inputs.size())print(labels)

torch.Size([32, 3, 224, 224]) tensor([0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1])

2.7、创建网络模型# 创建网络模型use_pretrained = Truenet = models.vgg16(pretrained=use_pretrained)print(net)net.classifier[6] = nn.Linear(in_features=4096, out_features=2)print(net)net.train()print('网络设置完毕: 载入已经学习完毕的权重,并设置为训练模式')

VGG( (features): Sequential( (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): ReLU(inplace=True) (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (3): ReLU(inplace=True) (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (6): ReLU(inplace=True) (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (8): ReLU(inplace=True) (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (11): ReLU(inplace=True) (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (13): ReLU(inplace=True) (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (15): ReLU(inplace=True) (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (18): ReLU(inplace=True) (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (20): ReLU(inplace=True) (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (22): ReLU(inplace=True) (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (25): ReLU(inplace=True) (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (27): ReLU(inplace=True) (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (29): ReLU(inplace=True) (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) (avgpool): AdaptiveAvgPool2d(output_size=(7, 7)) (classifier): Sequential( (0): Linear(in_features=25088, out_features=4096, bias=True) (1): ReLU(inplace=True) (2): Dropout(p=0.5, inplace=False) (3): Linear(in_features=4096, out_features=4096, bias=True) (4): ReLU(inplace=True) (5): Dropout(p=0.5, inplace=False) (6): Linear(in_features=4096, out_features=1000, bias=True) ) ) VGG( (features): Sequential( (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): ReLU(inplace=True) (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (3): ReLU(inplace=True) (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (6): ReLU(inplace=True) (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (8): ReLU(inplace=True) (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (11): ReLU(inplace=True) (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (13): ReLU(inplace=True) (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (15): ReLU(inplace=True) (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (18): ReLU(inplace=True) (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (20): ReLU(inplace=True) (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (22): ReLU(inplace=True) (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (25): ReLU(inplace=True) (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (27): ReLU(inplace=True) (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (29): ReLU(inplace=True) (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) (avgpool): AdaptiveAvgPool2d(output_size=(7, 7)) (classifier): Sequential( (0): Linear(in_features=25088, out_features=4096, bias=True) (1): ReLU(inplace=True) (2): Dropout(p=0.5, inplace=False) (3): Linear(in_features=4096, out_features=4096, bias=True) (4): ReLU(inplace=True) (5): Dropout(p=0.5, inplace=False) (6): Linear(in_features=4096, out_features=2, bias=True) ) ) 网络设置完毕: 载入已经学习完毕的权重,并设置为训练模式

2.8、定义损失函数# 定义损失函数criterion = nn.CrossEntropyLoss()2.9、设定最优化算法# 设定最优化算法params_to_update = []# print(net.named_parameters())update_param_names = ['classifier.6.weight', 'classifier.6.bias']for name, param in net.named_parameters(): # print(name) # print(param) if name in update_param_names: param.requires_grad = True params_to_update.append(param) print(name) else: param.requires_grad = Falseprint('=========================')print(params_to_update)# 设置最优化算法optimizer = optim.SGD(params=params_to_update, lr=0.001, momentum=0.9)print(optimizer)classifier.6.weight classifier.6.bias

[Parameter containing: tensor([[-0.0048, 0.0072, -0.0081, …, 0.0003, -0.0040, 0.0048], [ 0.0051, 0.0072, -0.0154, …, 0.0054, 0.0152, 0.0083]], requires_grad=True), Parameter containing: tensor([ 0.0108, -0.0054], requires_grad=True)] SGD ( Parameter Group 0 dampening: 0 lr: 0.001 momentum: 0.9 nesterov: False weight_decay: 0 )

2.10、训练和验证# 学习和验证的实行def train_model(net, dataloaders_dict, criterion, optimizer, num_epochs): for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch + 1, num_epochs)) print('--------------------') for phase in ['train', 'val']: if phase == 'train': net.train() else: net.eval() epoch_loss = 0.0 epoch_corrects = 0 if epoch == 0 and phase == 'train': continue for inputs, labels in tqdm(dataloaders_dict[phase]): optimizer.zero_grad() with torch.set_grad_enabled(phase == 'train'): outputs = net(inputs) loss = criterion(outputs, labels) _, preds = torch.max(outputs, 1) if phase == 'train': loss.backward() optimizer.step() epoch_loss += loss.item() * inputs.size(0) epoch_corrects += torch.sum(preds == labels.data) epoch_loss = epoch_loss / len(dataloaders_dict[phase].dataset) epoch_acc = epoch_corrects.double() / len(dataloaders_dict[phase].dataset) print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))2.11、主函数if __name__ == '__main__': num_epochs = 2 train_model(net, dataloaders_dict, criterion, optimizer, num_epochs=num_epochs)

2.12、保存和加载网络模型 # 保存和读取训练完毕的网络 # save_path = './weights_fine_tuning.pth' # torch.save(net.state_dict(), save_path) # 加载训练好的网络参数 load_path = './weights_fine_tuning.pth' load_weights = torch.load(load_path) net.load_state_dict(load_weights) print(net)
本文链接地址:https://www.jiuchutong.com/zhishi/300555.html 转载请保留说明!

上一篇:使用el-upload组件实现递归多文件上传(elementui的upload组件详解)

下一篇:vue3 响应式 API 之 ref(vue3 响应式ui框架)

  • 增值税有哪些二类税种
  • 取得发票与实际业务不符怎么办
  • 无形资产属于货币性项目吗
  • 啤酒消费税在那里征收
  • 主管盾和制单盾的区别
  • 物料耗用
  • 个人所得税app是什么意思
  • 技术转让成本包括什么
  • 个体工商户出租商铺个人所得税
  • 应付账款保理是什么意思
  • 商品已发出未开票未收款怎么做账
  • 在外省预交企业所得税
  • 资本公积转增资本的条件
  • 商贸企业仓储服务有哪些
  • 使用专项资金购买的固定资产 需要取得发票吗
  • 核销单丢失后应该怎么挂失和补录处理呢?
  • 总额法和净额法哪个合理
  • 财务刻章属于什么行业
  • 员工宿舍固定资产检查通知
  • 研发费用税前加计扣除
  • windows11如何删除账户
  • 总公司与分公司的账务处理
  • 平时发票未上传怎么回事
  • 认缴出资日期没到
  • 公租房租金收入免企业所得税吗
  • 工程结算和决算一样吗
  • 返点收入怎么会计分录
  • 年底会计结账
  • 增值税红字专用发票什么意思
  • 小规模纳税人销售自己使用过固定资产
  • thinkphp excel
  • php微信公众号开发框架
  • 公司更衣柜费用怎么算
  • vue开发环境和生产环境域名配置
  • 深度学习实战(十):使用 PyTorch 进行 3D 医学图像分割
  • css水平居中和垂直居中怎么设置
  • 2023 年值得关注的 9 个 Web3 发展趋势
  • 交通运输发票票样
  • 利润表三步法
  • 待处理财产损溢在资产负债表中填哪里
  • 固定资产租赁费用的税前扣除标准
  • 增值税发票货物名称要求
  • 商业汇票利息账务处理如何做?
  • python中如何创建文件
  • 固定资产折旧的账务处理
  • 应交增值税进项税额
  • 资产负债表是面子
  • 期末结转会计分录总结
  • 负商誉的分录
  • 工程物资属于什么科目资产负债表
  • 企业增资扩股如何办理
  • 管理费用包括哪些
  • 投资收益主要包括哪些
  • 银行承兑汇票托收凭证
  • 财务人员需要填报的报表有哪些
  • 生产费用明细账
  • 如何防止mysql数据库攻击
  • 自动软件脚本
  • win2003出现各种硬件故障问题时的处理方法
  • 简述linux系统有什么显著特点
  • win7手动装系统步骤
  • ubuntu的root
  • nvvsvc.exe是什么进程
  • macbook恢复macos
  • 微软禁用windows
  • 如何将文件夹建立成快捷方式
  • linux中使用find命令查找文件
  • 蓝牙鼠标不能动了
  • 创游世界
  • dos rd命令
  • css颜色值正确的表达形式
  • unity的vector3
  • javascript definitive guide
  • Unity3D游戏开发引擎
  • unity2d小地图
  • android开发环境搭建实验报告总结
  • WINDOWS中使用磁盘清理的主要作用是为了什么
  • 税务总局电子申报软件怎么用
  • 一般纳税人什么意思
  • 如何进行税务筹划工作
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设