位置: IT常识 - 正文

yolov5加入CBAM,SE,CA,ECA注意力机制,纯代码(22.3.1还更新)(yolov5加入注意力机制后网络后进行剪枝)

编辑:rootadmin
yolov5加入CBAM,SE,CA,ECA注意力机制,纯代码(22.3.1还更新)

推荐整理分享yolov5加入CBAM,SE,CA,ECA注意力机制,纯代码(22.3.1还更新)(yolov5加入注意力机制后网络后进行剪枝),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:yolov5加入注意力机制后网络后进行剪枝,yolov5加入报警功能代码,yolov5加入注意力机制有用吗,yolov5加入报警功能代码,yolov5加入CTR3模块,yolov5加入报警功能代码,yolov5加入注意力机制有用吗,yolov5加入注意力机制,内容如对您有帮助,希望把文章链接给更多的朋友!

 本文所涉及到的yolov5网络为5.0版本,后续有需求会更新6.0版本。

CBAM注意力# class ChannelAttention(nn.Module):# def __init__(self, in_planes, ratio=16):# super(ChannelAttention, self).__init__()# self.avg_pool = nn.AdaptiveAvgPool2d(1)# self.max_pool = nn.AdaptiveMaxPool2d(1)## self.f1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)# self.relu = nn.ReLU()# self.f2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)# # 写法二,亦可使用顺序容器# # self.sharedMLP = nn.Sequential(# # nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False), nn.ReLU(),# # nn.Conv2d(in_planes // rotio, in_planes, 1, bias=False))## self.sigmoid = nn.Sigmoid()## def forward(self, x):# avg_out = self.f2(self.relu(self.f1(self.avg_pool(x))))# max_out = self.f2(self.relu(self.f1(self.max_pool(x))))# out = self.sigmoid(avg_out + max_out)# return out### class SpatialAttention(nn.Module):# def __init__(self, kernel_size=7):# super(SpatialAttention, self).__init__()## assert kernel_size in (3, 7), 'kernel size must be 3 or 7'# padding = 3 if kernel_size == 7 else 1## self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)# self.sigmoid = nn.Sigmoid()## def forward(self, x):# avg_out = torch.mean(x, dim=1, keepdim=True)# max_out, _ = torch.max(x, dim=1, keepdim=True)# x = torch.cat([avg_out, max_out], dim=1)# x = self.conv(x)# return self.sigmoid(x)### class CBAMC3(nn.Module):# # CSP Bottleneck with 3 convolutions# def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion# super(CBAMC3, self).__init__()# c_ = int(c2 * e) # hidden channels# self.cv1 = Conv(c1, c_, 1, 1)# self.cv2 = Conv(c1, c_, 1, 1)# self.cv3 = Conv(2 * c_, c2, 1)# self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])# self.channel_attention = ChannelAttention(c2, 16)# self.spatial_attention = SpatialAttention(7)## # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])## def forward(self, x):# out = self.channel_attention(x) * x# print('outchannels:{}'.format(out.shape))# out = self.spatial_attention(out) * out# return outCBAM代码 2022.1.26更新

受大佬指点,指出上述cbam模块不匹配yolov5工程代码,yolov5加入cbam注意力的代码以下述代码为准:(如果用这段代码,yolo.py和yaml文件中相应的CBAMC3也要换成CBAM,下面的SE同理)

class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=16): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.f1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu = nn.ReLU() self.f2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) # 写法二,亦可使用顺序容器 # self.sharedMLP = nn.Sequential( # nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False), nn.ReLU(), # nn.Conv2d(in_planes // rotio, in_planes, 1, bias=False)) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.f2(self.relu(self.f1(self.avg_pool(x)))) max_out = self.f2(self.relu(self.f1(self.max_pool(x)))) out = self.sigmoid(avg_out + max_out) return outclass SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avg_out, max_out], dim=1) x = self.conv(x) return self.sigmoid(x)class CBAM(nn.Module): # CSP Bottleneck with 3 convolutions def __init__(self, c1, c2, ratio=16, kernel_size=7): # ch_in, ch_out, number, shortcut, groups, expansion super(CBAM, self).__init__() # c_ = int(c2 * e) # hidden channels # self.cv1 = Conv(c1, c_, 1, 1) # self.cv2 = Conv(c1, c_, 1, 1) # self.cv3 = Conv(2 * c_, c2, 1) # self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) self.channel_attention = ChannelAttention(c1, ratio) self.spatial_attention = SpatialAttention(kernel_size) # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)]) def forward(self, x): out = self.channel_attention(x) * x # print('outchannels:{}'.format(out.shape)) out = self.spatial_attention(out) * out return out

 1.这里是卷积注意力的代码,我一般喜欢加在common.py的C3模块后面,不需要做改动,傻瓜ctrl+c+v就可以了。

2.在yolo.py里做改动。在parse_model函数里将对应代码用以下代码替换,还是傻瓜ctrl+c+v。

if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR,CBAMC3]: c1, c2 = ch[f], args[0] if c2 != no: # if not output c2 = make_divisible(c2 * gw, 8) args = [c1, c2, *args[1:]] if m in [BottleneckCSP, C3,CBAMC3]: args.insert(2, n) # number of repeats n = 1

3.在yaml文件里改动。比如你要用s网络,我是这样改的:将骨干网络中的C3模块全部替换为CBAMC3模块(这里需要注意的是,这样改动只能加载少部分预训练权重)。如果不想改动这么大,那么接着往下看。

pytorch中加入注意力机制(CBAM),以yolov5为例_YY_172的博客-CSDN博客_yolov5加注意力

这是首发将CBAM注意力添加到yolov5网络中的博主,我也是看了他的方法,侵删。

backbone: # [from, number, module, args] [[-1, 1, Focus, [64, 3]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3,CBAMC3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 9, CBAMC3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, CBAMC3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 1, SPP, [1024, [5, 9, 13]]], [-1, 3, CBAMC3, [1024, False]], # 9 ] SE注意力class SELayer(nn.Module): def __init__(self, c1, r=16): super(SELayer, self).__init__() self.avgpool = nn.AdaptiveAvgPool2d(1) self.l1 = nn.Linear(c1, c1 // r, bias=False) self.relu = nn.ReLU(inplace=True) self.l2 = nn.Linear(c1 // r, c1, bias=False) self.sig = nn.Sigmoid() def forward(self, x): b, c, _, _ = x.size() y = self.avgpool(x).view(b, c) y = self.l1(y) y = self.relu(y) y = self.l2(y) y = self.sig(y) y = y.view(b, c, 1, 1) return x * y.expand_as(x)2022.1.26SE代码更新 

受同一位大佬指正,上述部分的se代码同样没有匹配yolov5工程代码,将修改后的se代码贴出,se注意力的代码以下述为准:

class SE(nn.Module): def __init__(self, c1, c2, r=16): super(SE, self).__init__() self.avgpool = nn.AdaptiveAvgPool2d(1) self.l1 = nn.Linear(c1, c1 // r, bias=False) self.relu = nn.ReLU(inplace=True) self.l2 = nn.Linear(c1 // r, c1, bias=False) self.sig = nn.Sigmoid() def forward(self, x): print(x.size()) b, c, _, _ = x.size() y = self.avgpool(x).view(b, c) y = self.l1(y) y = self.relu(y) y = self.l2(y) y = self.sig(y) y = y.view(b, c, 1, 1) return x * y.expand_as(x)

1.这里是SE注意力的代码段,同上一个注意力的加法一样,我喜欢加在C3后面。

2.在yolo.py中做改动。

def parse_model(d, ch): # model_dict, input_channels(3) logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors no = na * (nc + 5) # number of outputs = anchors * (classes + 5) layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args m = eval(m) if isinstance(m, str) else m # eval strings for j, a in enumerate(args): try: args[j] = eval(a) if isinstance(a, str) else a # eval strings except: pass n = max(round(n * gd), 1) if n > 1 else n # depth gain if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR, CoordAtt, SELayer, eca_layer, CBAM]: c1, c2 = ch[f], args[0] if c2 != no: # if not output c2 = make_divisible(c2 * gw, 8) args = [c1, c2, *args[1:]] if m in [BottleneckCSP, C3, C3TR]: args.insert(2, n) # number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum([ch[x] for x in f]) elif m is Detect: args.append([ch[x] for x in f]) if isinstance(args[1], int): # number of anchors args[1] = [list(range(args[1] * 2))] * len(f) elif m is Contract: c2 = ch[f] * args[0] ** 2 elif m is Expand: c2 = ch[f] // args[0] ** 2 else: c2 = ch[f]

3.在你要用的yaml文件中做改动。

backbone: # [from, number, module, args] [[-1, 1, Focus, [64, 3]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3,C3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 9, C3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 1, SPP, [1024, [5, 9, 13]]], [-1, 3, C3, [1024, False]], # 9 [-1, 1, SELayer, [1024, 4]] ]

 运行成功后是这样的

 应该能看到那个注意力加在哪里了吧,这就是用上了。

这是我用的另一种添加注意力的方法,这种方法会加载预训练权重,推荐大家使用这种方法。既然推荐大家使用这种方法,那我推荐添加CBAM注意力那种方法目的是啥呢?哈哈哈哈再往下看。

yolov5加入CBAM,SE,CA,ECA注意力机制,纯代码(22.3.1还更新)(yolov5加入注意力机制后网络后进行剪枝)

天池竞赛-布匹缺陷检测baseline提升过程-给yolov5模型添加注意力机制_pprp的博客-CSDN博客_yolov5注意力机制

这是我看的将SE注意力添加到 yolov5模型里的博客,我同样也是引用了这位博主的方法,感谢分享,侵删。

 ECA注意力# class eca_layer(nn.Module):# """Constructs a ECA module.# Args:# channel: Number of channels of the input feature map# k_size: Adaptive selection of kernel size# """# def __init__(self, channel, k_size=3):# super(eca_layer, self).__init__()# self.avg_pool = nn.AdaptiveAvgPool2d(1)# self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)# self.sigmoid = nn.Sigmoid()## def forward(self, x):# # feature descriptor on the global spatial information# y = self.avg_pool(x)## # Two different branches of ECA module# y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)## # Multi-scale information fusion# y = self.sigmoid(y)# x=x*y.expand_as(x)## return x * y.expand_as(x)

1.这里是注意力代码片段,放到自己的脚本里把注释取消掉就可以了,添加的位置同上,这里就不说了。 

2.改动yolo.py。看以下代码段。

if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR]: c1, c2 = ch[f], args[0] if c2 != no: # if not output c2 = make_divisible(c2 * gw, 8) args = [c1, c2, *args[1:]] if m in [BottleneckCSP, C3,eca_layer]: args.insert(2, n) # number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum([ch[x] for x in f]) elif m is Detect: args.append([ch[x] for x in f]) if isinstance(args[1], int): # number of anchors args[1] = [list(range(args[1] * 2))] * len(f) elif m is Contract: c2 = ch[f] * args[0] ** 2 elif m is Expand: c2 = ch[f] // args[0] ** 2 elif m is eca_layer: channel=args[0] channel=make_divisible(channel*gw,8)if channel != no else channel args=[channel] else: c2 = ch[f]

 3.改动你要用的yaml文件。这里我要解释一下为什么交代了两种添加注意力的方法(第一种:将骨干里的C3全部替换掉;第二种:在骨干最后一层加注意力,做一个输出层)。第二种方法的模型目前还在跑,还没出结果,不过模型的结果也能猜个大概,有稳定的微小提升,detect效果不会提升太多;我在用第一种方法将ECA注意力全部替换掉骨干里的C3时,模型的p、r、map均出现了下降的情况,大概就是一个两个点,但是令人意外的是,他的检测效果很好,能够检测到未作改动前的模型很多检测不到的目标,当然也会比原模型出现更多的误检和漏检情况,手动改阈值后好了很多,因为数据集涉及到公司机密,所以这里就不放出来了,我做的是安全帽的检测,有兴趣的同学可以尝试一下这种添加注意力的方法。

看下其中一张的检测结果。

如果只是求提高模型准确率,推荐第二种方法。

 接下来就是发表在今年CVPR上的注意力了。

CoorAttention# class h_sigmoid(nn.Module):# def __init__(self, inplace=True):# super(h_sigmoid, self).__init__()# self.relu = nn.ReLU6(inplace=inplace)## def forward(self, x):# return self.relu(x + 3) / 6### class h_swish(nn.Module):# def __init__(self, inplace=True):# super(h_swish, self).__init__()# self.sigmoid = h_sigmoid(inplace=inplace)## def forward(self, x):# return x * self.sigmoid(x)# class CoordAtt(nn.Module):# def __init__(self, inp, oup, reduction=32):# super(CoordAtt, self).__init__()# self.pool_h = nn.AdaptiveAvgPool2d((None, 1))# self.pool_w = nn.AdaptiveAvgPool2d((1, None))## mip = max(8, inp // reduction)## self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)# self.bn1 = nn.BatchNorm2d(mip)# self.act = h_swish()## self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)# self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)## def forward(self, x):# identity = x## n, c, h, w = x.size()# x_h = self.pool_h(x)# x_w = self.pool_w(x).permute(0, 1, 3, 2)## y = torch.cat([x_h, x_w], dim=2)# y = self.conv1(y)# y = self.bn1(y)# y = self.act(y)## x_h, x_w = torch.split(y, [h, w], dim=2)# x_w = x_w.permute(0, 1, 3, 2)## a_h = self.conv_h(x_h).sigmoid()# a_w = self.conv_w(x_w).sigmoid()## out = identity * a_w * a_h## return out

 这是代码段,加在common.py的C3模块后面

 这里是改动yolo.py的部分,最后在yaml文件里的改动这里就不说了,前面提供了两种方法供大家使用,大家可以自行选择。

def parse_model(d, ch): # model_dict, input_channels(3) logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors no = na * (nc + 5) # number of outputs = anchors * (classes + 5) layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args m = eval(m) if isinstance(m, str) else m # eval strings for j, a in enumerate(args): try: args[j] = eval(a) if isinstance(a, str) else a # eval strings except: pass n = max(round(n * gd), 1) if n > 1 else n # depth gain if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR,CBAMC3,CoordAtt]:# c1, c2 = ch[f], args[0] if c2 != no: # if not output c2 = make_divisible(c2 * gw, 8) args = [c1, c2, *args[1:]] if m in [BottleneckCSP, C3, C3TR]: args.insert(2, n) # number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum([ch[x] for x in f]) elif m is Detect: args.append([ch[x] for x in f]) if isinstance(args[1], int): # number of anchors args[1] = [list(range(args[1] * 2))] * len(f) elif m is Contract: c2 = ch[f] * args[0] ** 2 elif m is Expand: c2 = ch[f] // args[0] ** 2 # elif m is eca_layer: # channel=args[0] # channel=make_divisible(channel*gw,8)if channel != no else channel # args=[channel] elif m is CoordAtt: inp,oup,re = args[0],args[1],args[2] oup = make_divisible(oup * gw, 8) if oup != no else oup args = [inp,oup,re] else: c2 = ch[f]

后面的ECA和CA注意力添加方法是我对着前两位博主照葫芦画瓢,在我的本地运行多次,就俩字,好用,以后的注意力也可以按照这种方法去添加。

yolov5-6.0版本的注意力添加方法请移步这里

各种注意力的添加方法以及如何work,我都懂一些,如果有需要的朋友可以联系我,赚点生活费。

2022.2.14更:本人已实现使用densenet替换focus、neck中fpn结构改为bi-fpn代码,有需要的小伙伴请私聊,赚点生活费。可用于毕业以及硕士小论文发表的trick。 

 不胜感激,最后祝大家年薪百万。

扯完了。

本文链接地址:https://www.jiuchutong.com/zhishi/300578.html 转载请保留说明!

上一篇:Vue开发环境安装(vue开发环境配置)

下一篇:【年终总结】我的前端之行,回顾2022,展望2023(我的年终总结怎么写)

  • 荣耀手环5和荣耀手环5i有什么不同(荣耀手环5和荣耀手环4表带一样吗)

    荣耀手环5和荣耀手环5i有什么不同(荣耀手环5和荣耀手环4表带一样吗)

  • 关于微信营销:你不得不知的的8条实战秘笈(关于微信营销的论文)

    关于微信营销:你不得不知的的8条实战秘笈(关于微信营销的论文)

  • 荣耀50官方标配有耳机吗(荣耀50官网参数配置)

    荣耀50官方标配有耳机吗(荣耀50官网参数配置)

  • mac如何只录内置声音(macos 内录)

    mac如何只录内置声音(macos 内录)

  • 人气票算主播音浪收入吗(主播人气值是什么意思)

    人气票算主播音浪收入吗(主播人气值是什么意思)

  • 钉钉如何直播上课(钉钉如何直播上课连麦)

    钉钉如何直播上课(钉钉如何直播上课连麦)

  • 移动流量七天包是什么(移动流量七天包怎么用)

    移动流量七天包是什么(移动流量七天包怎么用)

  • 修复聊天记录显示没有异常无需修复(修复聊天记录显示没有异常无需修复是什么意思)

    修复聊天记录显示没有异常无需修复(修复聊天记录显示没有异常无需修复是什么意思)

  • 手机打印机拒绝打印print(手机打印机拒绝打印gallery pages)

    手机打印机拒绝打印print(手机打印机拒绝打印gallery pages)

  • 微信怎么充手机流量(微信怎么充手机钱包)

    微信怎么充手机流量(微信怎么充手机钱包)

  • 荣耀play3支持快充吗(荣耀play3可以用)

    荣耀play3支持快充吗(荣耀play3可以用)

  • sim卡泡水了还能用吗(sim卡 泡水)

    sim卡泡水了还能用吗(sim卡 泡水)

  • 手机基带坏了能修吗(手机基带坏了能更新系统吗)

    手机基带坏了能修吗(手机基带坏了能更新系统吗)

  • 怎么在抖音直播间点赞(怎么在抖音直播电视剧)

    怎么在抖音直播间点赞(怎么在抖音直播电视剧)

  • b站混剪算自制吗(b站做混剪能赚钱吗)

    b站混剪算自制吗(b站做混剪能赚钱吗)

  • vlookup精确查找是0还是1(vlookup精确查找怎么用)

    vlookup精确查找是0还是1(vlookup精确查找怎么用)

  • 华为p30后置摄像头玻璃碎了怎么办(华为p30后置摄像头像素)

    华为p30后置摄像头玻璃碎了怎么办(华为p30后置摄像头像素)

  • 知识星球为什么只能微信登录(知识星球为什么注销不了)

    知识星球为什么只能微信登录(知识星球为什么注销不了)

  • 电脑联网了但不能上网(电脑联网了但不能打开网页和登qq)

    电脑联网了但不能上网(电脑联网了但不能打开网页和登qq)

  • 淘宝双十一活动几号开始(淘宝双十一活动什么时候结束)

    淘宝双十一活动几号开始(淘宝双十一活动什么时候结束)

  • 抖音抢镜怎么调大图框(抖音里的抢镜怎么弄的)

    抖音抢镜怎么调大图框(抖音里的抢镜怎么弄的)

  • 快手怎么拍作品(快手怎么拍作品上热门)

    快手怎么拍作品(快手怎么拍作品上热门)

  • 苹果6sp摄像头抖动是什么原因(苹果6sp摄像头抖动怎么回事)

    苹果6sp摄像头抖动是什么原因(苹果6sp摄像头抖动怎么回事)

  • vivo反向充电怎么弄(vivo反向充电怎么给苹果充电)

    vivo反向充电怎么弄(vivo反向充电怎么给苹果充电)

  • 更改屏幕上的颜色以便更易于查看(屏幕颜色怎么变)

    更改屏幕上的颜色以便更易于查看(屏幕颜色怎么变)

  • 如何修改Linux账户的默认Shell类型?(linux怎么更改账户名)

    如何修改Linux账户的默认Shell类型?(linux怎么更改账户名)

  • deepin20窗口最小化魔灯效果怎么设置?(deepin缩放)

    deepin20窗口最小化魔灯效果怎么设置?(deepin缩放)

  • 前端原生Html免费模板网站总结(带网址)(前端 原生)

    前端原生Html免费模板网站总结(带网址)(前端 原生)

  • phpcms批量移动怎么用(phpcms多站点)

    phpcms批量移动怎么用(phpcms多站点)

  • 一般纳税人的税种有哪些
  • 货物运输代理服务
  • 多交税款如何处罚
  • 应付利润的核算内容
  • 机器不生产计提折旧吗
  • 财产租赁所得如何申报
  • 工程款材料费票怎么开?
  • 按工人工资比例结转制造费用的科目
  • 企业取暖费怎么做会计分录
  • 联通租赁官网
  • 堤围内的土地性质
  • 互联网合同范本
  • 工会经费可不可以不交
  • 同程旅行酒店预订
  • 外汇风险怎么规避
  • 零税率发票如何抵扣
  • 开发支出会计科目
  • 政府专项拨款账务处理
  • 补贴收入是否缴税
  • 购买汽车分期付款利息怎么算
  • 增值税进项税怎么算
  • 哪些进项税可以加计抵减
  • 退回现金怎么写分录
  • 企业购买银行理财
  • 商品换购是什么意思
  • macOSCatalina10.15.5Beta4值得升级吗 macOSCatalina10.15.5Beta4更新了什么
  • 增值税进项税转出文件
  • 销售点的增值税计算公式
  • 会计记账的内容
  • php中strstr
  • yii框架教程
  • 建设工程项目设计质量控制的内容
  • 数据库锁面试题
  • 成本降低率是什么意思
  • 机票行程单可以在到达地打印吗
  • sql server异常怎么处理
  • mysql服务开不起来
  • 单一窗口报关是指什么
  • 计提房产税土地使用税
  • 开普通发票税率一般是多少?
  • 如何区分交通运输的方向
  • 进口关税征收方法
  • 捐赠 赞助 区别
  • 收到境外支付的咨询费免税吗
  • 所得税费用如何计提分录
  • 土地出让金如何核算
  • 帮别人加工需要什么手续
  • 购买原材料无法准确划分用途的进项税额怎么抵扣
  • 管理费用和销售费用属于什么科目
  • 退票费收入按什么征税
  • 合资注册公司应该注意什么
  • 凭证扣除 28号
  • 民办非企业可以开发票吗
  • 企业出售投资性房地产应按照售价与账面价值
  • 费用设置的明细科目
  • 帐薄和账簿区别
  • mysql binlog redo
  • nvm是啥
  • win7 管理
  • win8安装出现了一些问题
  • win8.1系统没有wifi怎么办
  • macbook pro怎么分区
  • win7关机没反应怎么办
  • 微软账号重新登录
  • windows7笔记本无线网络连接
  • 验证win10
  • linux文件压缩和备份实验
  • cocos3.0
  • 深入理解关于教育两个大计
  • vue.js如何使用
  • Node.js中的核心模块包括哪些内容?
  • 批处理字符串截取
  • unity怎么导入材质包
  • JavaScript window.document的属性、方法和事件小结
  • jquery中validate
  • 河南省人民医院和郑大一附院哪个好
  • 长沙房产税如何征收
  • 沈阳新公司办理社保流程
  • 煤炭资源税税率表
  • 提高税务管理水平,降低税务风险
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设