位置: IT常识 - 正文

Pytorch实现MLP(基于PyTorch实现)(pytorch m1)

编辑:rootadmin
Pytorch实现MLP(基于PyTorch实现) 文章目录前言一、导入相关库二、加载Cora数据集三、定义MLP网络3.1 定义MLP层3.1.1 定义参数 WWW 和 bbb3.1.2 定义传播函数3.1.3 MLP层3.2 定义MLP网络四、定义模型五、模型训练六、模型验证七、结果完整代码前言

推荐整理分享Pytorch实现MLP(基于PyTorch实现)(pytorch m1),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:pytorch maml,pytorch mkldnn,mpi pytorch,pytorch mlp,mpi pytorch,pytorch mlp,mpi pytorch,pytorch maml,内容如对您有帮助,希望把文章链接给更多的朋友!

大家好,我是阿光。

本专栏整理了《图神经网络代码实战》,内包含了不同图神经网络的相关代码实现(PyG以及自实现),理论与实践相结合,如GCN、GAT、GraphSAGE等经典图网络,每一个代码实例都附带有完整的代码。

正在更新中~ ✨

🚨 我的项目环境:

平台:Windows10语言环境:python3.7编译器:PyCharmPyTorch版本:1.11.0PyG版本:2.1.0

💥 项目专栏:【图神经网络代码实战目录】

本文我们将使用PyTorch来简易实现一个MLP网络,不使用PyG库,让新手可以理解如何PyTorch来搭建一个简易的图网络实例demo。

一、导入相关库

本项目是采用自己实现的MLP,并没有使用 PyG 库,原因是为了帮助新手朋友们能够对MLP的原理有个更深刻的理解,如果熟悉之后可以尝试使用PyG库直接调用 MLP 这个图层即可。

import torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch_geometric.utils import scatterfrom torch_geometric.datasets import Planetoidimport torch_geometric.nn as pyg_nn二、加载Cora数据集

本文使用的数据集是比较经典的Cora数据集,它是一个根据科学论文之间相互引用关系而构建的Graph数据集合,论文分为7类,共2708篇。

Genetic_AlgorithmsNeural_NetworksProbabilistic_MethodsReinforcement_LearningRule_LearningTheory

这个数据集是一个用于图节点分类的任务,数据集中只有一张图,这张图中含有2708个节点,10556条边,每个节点的特征维度为1433。

# 1.加载Cora数据集dataset = Planetoid(root='./data/Cora', name='Cora')三、定义MLP网络3.1 定义MLP层

这里我们就不重点介绍MLP网络了,相信大家能够掌握基本原理,本文我们使用的是PyTorch定义网络层。

Pytorch实现MLP(基于PyTorch实现)(pytorch m1)

对于MLP的常用参数:

in_channels:每个样本的输入维度,就是每个节点的特征维度out_channels:经过注意力机制后映射成的新的维度,就是经过GAT后每个节点的维度长度bias:训练一个偏置b

我们在实现时也是考虑这几个常见参数,对于PyG的内置MLP层的参数可能有点复杂,它可以传入一个列表进行多层特征映射,这里为了简单就是实现一个最基本的单层MLP

对于MLP的传播公式为: H′=HW+bH'=HW+bH′=HW+b

上式子中的 HHH 代表每个层的输入特征,也就是每个节点的特征矩阵,如果是第一层,则 H=XH_0=XH0​=X,对于 WWW 代表每个 MLP 层的可学习参数,bbb 代表偏置参数。

所以我们的任务无非就是获取这几个变量,然后进行传播计算即可

3.1.1 定义参数 WWW 和 bbb

这里为了方便实现,直接利用了 Linear() 函数,如果可以的话可以利用最原始的方法使用 w = nn.Parameter(torch.randn(in_channels, out_channels)) 这种方式来定义参数 WWW

# 线性层self.linear = pyg_nn.dense.linear.Linear(in_channels, out_channels, weight_initializer='glorot', , bias=False)# 偏置if bias: self.bias = nn.Parameter(torch.Tensor(out_channels, 1)) self.bias = pyg_nn.inits.glorot(self.bias)else: self.register_parameter('bias', None)3.1.2 定义传播函数

对于MLP来说,就是一个简单的特征映射,实现一个简单的矩阵乘法而已,所以实现起来较为容易,直接调用定义好的线性层即可,最终加上偏置。

def forward(self, x):# 1.特征映射out = self.linear(x)# 2.添加偏置if self.bias != None: out += self.biasreturn out3.1.3 MLP层

接下来就可以定义MLP层了,该层实现了1个函数,分别是forward()

forward():这个函数定义模型的传播过程,也就是上面公式的 HWHWHW,如果设置了偏置在加上偏置返回即可# 2.定义MLP层class MLP(nn.Module): def __init__(self, in_channels, out_channels, bias=True): super(MLP, self).__init__() self.in_channels = in_channels # 输入图节点的特征数 self.out_channels = out_channels # 输出图节点的特征数 # 线性层 self.linear = pyg_nn.dense.linear.Linear(in_channels, out_channels, weight_initializer='glorot', bias=False) # 偏置 if bias: self.bias = nn.Parameter(torch.Tensor(out_channels, 1)) self.bias = pyg_nn.inits.glorot(self.bias) else: self.register_parameter('bias', None) def forward(self, x): # 1.特征映射 out = self.linear(x) # 2.添加偏置 if self.bias != None: out += self.bias return out

对于我们实现这个网络的实现效率上来讲比PyG框架内置的 MLP 层稍差一点,因为我们是按照公式来一步一步利用矩阵计算得到,没有对矩阵计算以及算法进行优化,不然初学者可能看不太懂,不利于理解MLP公式的传播过程,有能力的小伙伴可以看下官方源码学习一下。

3.2 定义MLP网络

上面我们已经实现好了 MLP 的网络层,之后就可以调用这个层来搭建 MLP 网络。

# 3.定义MLP网络class Model(nn.Module): def __init__(self, num_node_features, num_classes): super(Model, self).__init__() self.lin_1 = MLP(num_node_features, 16) self.lin_2 = MLP(16, num_classes) def forward(self, data): x = data.x x = self.lin_1(x) x = F.relu(x) x = F.dropout(x, training=self.training) x = self.lin_2(x) return F.log_softmax(x, dim=1)

上面网络我们定义了两个 MLP 层,第一层的参数的输入维度就是初始每个节点的特征维度,输出维度是16。

第二个层的输入维度为16,输出维度为分类个数,因为我们需要对每个节点进行分类,最终加上softmax操作。

四、定义模型

下面就是定义了一些模型需要的参数,像学习率、迭代次数这些超参数,然后是模型的定义以及优化器及损失函数的定义,和pytorch定义网络是一样的。

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备epochs = 10 # 学习轮数lr = 0.003 # 学习率num_node_features = dataset.num_node_features # 每个节点的特征数num_classes = dataset.num_classes # 每个节点的类别数data = dataset[0].to(device) # Cora的一张图# 3.定义模型model = Model(num_node_features, num_classes).to(device)optimizer = torch.optim.Adam(model.parameters(), lr=lr) # 优化器loss_function = nn.NLLLoss() # 损失函数五、模型训练

模型训练部分也是和pytorch定义网络一样,因为都是需要经过前向传播、反向传播这些过程,对于损失、精度这些指标可以自己添加。

# 训练模式model.train()for epoch in range(epochs): optimizer.zero_grad() pred = model(data) loss = loss_function(pred[data.train_mask], data.y[data.train_mask]) # 损失 correct_count_train = pred.argmax(axis=1)[data.train_mask].eq(data.y[data.train_mask]).sum().item() # epoch正确分类数目 acc_train = correct_count_train / data.train_mask.sum().item() # epoch训练精度 loss.backward() optimizer.step() if epoch % 20 == 0: print("【EPOCH: 】%s" % str(epoch + 1)) print('训练损失为:{:.4f}'.format(loss.item()), '训练精度为:{:.4f}'.format(acc_train))print('【Finished Training!】')六、模型验证

下面就是模型验证阶段,在训练时我们是只使用了训练集,测试的时候我们使用的是测试集,注意这和传统网络测试不太一样,在图像分类一些经典任务中,我们是把数据集分成了两份,分别是训练集、测试集,但是在Cora这个数据集中并没有这样,它区分训练集还是测试集使用的是掩码机制,就是定义了一个和节点长度相同纬度的数组,该数组的每个位置为True或者False,标记着是否使用该节点的数据进行训练。

# 模型验证model.eval()pred = model(data)# 训练集(使用了掩码)correct_count_train = pred.argmax(axis=1)[data.train_mask].eq(data.y[data.train_mask]).sum().item()acc_train = correct_count_train / data.train_mask.sum().item()loss_train = loss_function(pred[data.train_mask], data.y[data.train_mask]).item()# 测试集correct_count_test = pred.argmax(axis=1)[data.test_mask].eq(data.y[data.test_mask]).sum().item()acc_test = correct_count_test / data.test_mask.sum().item()loss_test = loss_function(pred[data.test_mask], data.y[data.test_mask]).item()print('Train Accuracy: {:.4f}'.format(acc_train), 'Train Loss: {:.4f}'.format(loss_train))print('Test Accuracy: {:.4f}'.format(acc_test), 'Test Loss: {:.4f}'.format(loss_test))七、结果【EPOCH: 】1训练损失为:1.9460 训练精度为:0.2071【EPOCH: 】21训练损失为:1.8583 训练精度为:0.2714【EPOCH: 】41训练损失为:1.7751 训练精度为:0.3643【EPOCH: 】61训练损失为:1.7049 训练精度为:0.4357【EPOCH: 】81训练损失为:1.5710 训练精度为:0.5929【EPOCH: 】101训练损失为:1.4686 训练精度为:0.6214【EPOCH: 】121训练损失为:1.3101 训练精度为:0.7286【EPOCH: 】141训练损失为:1.2317 训练精度为:0.7143【EPOCH: 】161训练损失为:1.2142 训练精度为:0.7571【EPOCH: 】181训练损失为:1.0434 训练精度为:0.8214【Finished Training!】>>>Train Accuracy: 0.9929 Train Loss: 0.8560>>>Test Accuracy: 0.3910 Test Loss: 1.7350训练集测试集Accuracy0.99290.3910Loss0.85601.7350完整代码import torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch_geometric.utils import scatterfrom torch_geometric.datasets import Planetoidimport torch_geometric.nn as pyg_nn# 1.加载Cora数据集dataset = Planetoid(root='../data/Cora', name='Cora')# 2.定义MLP层class MLP(nn.Module): def __init__(self, in_channels, out_channels, bias=True): super(MLP, self).__init__() self.in_channels = in_channels # 输入图节点的特征数 self.out_channels = out_channels # 输出图节点的特征数 # 线性层 self.linear = pyg_nn.dense.linear.Linear(in_channels, out_channels, weight_initializer='glorot', bias=False) # 偏置 if bias: self.bias = nn.Parameter(torch.Tensor(out_channels, 1)) self.bias = pyg_nn.inits.glorot(self.bias) else: self.register_parameter('bias', None) def forward(self, x): # 1.特征映射 out = self.linear(x) # 2.添加偏置 if self.bias != None: out += self.bias return out# 3.定义MLP网络class Model(nn.Module): def __init__(self, num_node_features, num_classes): super(Model, self).__init__() self.lin_1 = MLP(num_node_features, 16) self.lin_2 = MLP(16, num_classes) def forward(self, data): x = data.x x = self.lin_1(x) x = F.relu(x) x = F.dropout(x, training=self.training) x = self.lin_2(x) return F.log_softmax(x, dim=1)device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备epochs = 200 # 学习轮数lr = 0.0003 # 学习率num_node_features = dataset.num_node_features # 每个节点的特征数num_classes = dataset.num_classes # 每个节点的类别数data = dataset[0].to(device) # Cora的一张图# 4.定义模型model = Model(num_node_features, num_classes).to(device)optimizer = torch.optim.Adam(model.parameters(), lr=lr) # 优化器loss_function = nn.NLLLoss() # 损失函数# 训练模式model.train()for epoch in range(epochs): optimizer.zero_grad() pred = model(data) loss = loss_function(pred[data.train_mask], data.y[data.train_mask]) # 损失 correct_count_train = pred.argmax(axis=1)[data.train_mask].eq(data.y[data.train_mask]).sum().item() # epoch正确分类数目 acc_train = correct_count_train / data.train_mask.sum().item() # epoch训练精度 loss.backward() optimizer.step() if epoch % 20 == 0: print("【EPOCH: 】%s" % str(epoch + 1)) print('训练损失为:{:.4f}'.format(loss.item()), '训练精度为:{:.4f}'.format(acc_train))print('【Finished Training!】')# 模型验证model.eval()pred = model(data)# 训练集(使用了掩码)correct_count_train = pred.argmax(axis=1)[data.train_mask].eq(data.y[data.train_mask]).sum().item()acc_train = correct_count_train / data.train_mask.sum().item()loss_train = loss_function(pred[data.train_mask], data.y[data.train_mask]).item()# 测试集correct_count_test = pred.argmax(axis=1)[data.test_mask].eq(data.y[data.test_mask]).sum().item()acc_test = correct_count_test / data.test_mask.sum().item()loss_test = loss_function(pred[data.test_mask], data.y[data.test_mask]).item()print('Train Accuracy: {:.4f}'.format(acc_train), 'Train Loss: {:.4f}'.format(loss_train))print('Test Accuracy: {:.4f}'.format(acc_test), 'Test Loss: {:.4f}'.format(loss_test))
本文链接地址:https://www.jiuchutong.com/zhishi/300652.html 转载请保留说明!

上一篇:【ChatGPT】中国支付清算协会倡议支付行业从业人员谨慎使用ChatGPT(ChatGPT中国电话不能注册)

下一篇:若依框架前端Vue项目分析实战(若依框架前端发请求)

  • 智学网好友伴学在哪里(智学网好友伴学破解)

    智学网好友伴学在哪里(智学网好友伴学破解)

  • word艺术字环绕方式怎么设置(word艺术字环绕方式紧密型)

    word艺术字环绕方式怎么设置(word艺术字环绕方式紧密型)

  • OPPO手机卡顿反应慢如何解决(OPPO手机卡顿反应慢玩游戏出现闪退)

    OPPO手机卡顿反应慢如何解决(OPPO手机卡顿反应慢玩游戏出现闪退)

  • 朋友仅展示最近一个月的朋友圈(朋友仅展示最近三天怎么设置)

    朋友仅展示最近一个月的朋友圈(朋友仅展示最近三天怎么设置)

  • 图片查看器提示内存不足(图片查看器提示彩色打印)

    图片查看器提示内存不足(图片查看器提示彩色打印)

  • 为什么快手推广作品还是没人看(为什么快手推广都是假人)

    为什么快手推广作品还是没人看(为什么快手推广都是假人)

  • 华为平板m6微信手机同时登录(华为平板m6微信视频怎么美颜)

    华为平板m6微信手机同时登录(华为平板m6微信视频怎么美颜)

  • iphone11pro max和11pro区别(iphone11pro max和11屏幕效果对比大吗)

    iphone11pro max和11pro区别(iphone11pro max和11屏幕效果对比大吗)

  • flyme账号是什么(flyme账号是什么格式的)

    flyme账号是什么(flyme账号是什么格式的)

  • 强制关闭电脑程序的快捷键是什么(强制关闭电脑程序按什么键)

    强制关闭电脑程序的快捷键是什么(强制关闭电脑程序按什么键)

  • 如何改变自己的ip(如何改变自己的命运和运气)

    如何改变自己的ip(如何改变自己的命运和运气)

  • 手机屏幕出现蓝色阴影是怎么回事(手机屏幕出现蓝色边框怎么取消)

    手机屏幕出现蓝色阴影是怎么回事(手机屏幕出现蓝色边框怎么取消)

  • 手机计算器平方怎么按(手机计算器平方2怎么打出来)

    手机计算器平方怎么按(手机计算器平方2怎么打出来)

  • 华为nova5pro充电器多少w(华为nova5pro充电线型号)

    华为nova5pro充电器多少w(华为nova5pro充电线型号)

  • 苹果云空间怎么打开(苹果云空间怎么找回照片和视频)

    苹果云空间怎么打开(苹果云空间怎么找回照片和视频)

  • 结构化程序设计的基本要点(结构化程序设计的三种基本结构)

    结构化程序设计的基本要点(结构化程序设计的三种基本结构)

  • 怎么发动态短信(怎么发动态短信给对方)

    怎么发动态短信(怎么发动态短信给对方)

  • 文件出现乱码怎么恢复(文件乱码怎么转换)

    文件出现乱码怎么恢复(文件乱码怎么转换)

  • 财运红包怎么用(什么是财运红包)

    财运红包怎么用(什么是财运红包)

  • 方舟编译器怎么开(方舟编译器怎么没消息了)

    方舟编译器怎么开(方舟编译器怎么没消息了)

  • 抖音订单怎么删除(抖音订单怎么删评论记录)

    抖音订单怎么删除(抖音订单怎么删评论记录)

  • iphonexs充电须知(iphonexs充电需要多久)

    iphonexs充电须知(iphonexs充电需要多久)

  • 快手提现多久到账(快手提现多久到账微信)

    快手提现多久到账(快手提现多久到账微信)

  • 两只双峰骆驼 (© Nurlan Kulcha/Alamy)(双峰骆驼什么意思)

    两只双峰骆驼 (© Nurlan Kulcha/Alamy)(双峰骆驼什么意思)

  • 个人将租用的商铺怎么办
  • 以件数为印花税计税依据的有哪些
  • 定额发票收入怎么报税
  • 成本核算方法有先进先出法吗
  • 计提残疾人保障金会计分录
  • 符合条件的居民企业之间股息红利
  • 发出材料汇总表金额怎么算
  • 调整以前年度多计提的工资
  • 自然人股权转让要交什么税
  • 建筑企业成本票是含税价还是不含税价
  • 发票认证勾选是一回事吗
  • 学校方面的增值税的问题
  • 实时扣税3001会计科目
  • 增值普通发票税率怎么算
  • 个人提前退休取得的一次性补贴收入免征
  • 开具发票有哪些特殊规定?
  • 个人所得税承租承包经营所得
  • 公司为员工承担房租
  • 旅行社确定收入毛利成本怎么确定?
  • 承兑汇票背书用什么方法?
  • 什么情况增值税专用发票不能抵扣
  • 远期结汇账务处理分录
  • 税务局开的专票可以抵扣吗
  • 废旧物资收购价目表
  • 仓库存在不足
  • 借支单如何做账科目
  • 在建工程及时结转重要性
  • 公司的固定资产是什么
  • RPDFLchr.exe - RPDFLchr是什么进程 有什么用
  • 电脑关机了wifi还能检测到在线
  • 小规模纳税人清卡是每月一次吗
  • 供应商自身的品质问题
  • php-mysql安装
  • 谷歌浏览器如何设置主页为默认页
  • 太平鸟的翅膀上有几道红羽毛
  • 布鲁克顿的一只狗叫什么
  • php curl_multi_init
  • linux ar命令
  • 合同价格约定不明法律规定
  • 总包缴税
  • 其他应收款怎么冲平会计分录
  • 微小企业开票一天可以开多少钱
  • 一次性计入当期成本费用是什么意思
  • sql server数据类型明明放的是浮点型,老是说是其他的
  • 研发费用加计扣除新税收政策
  • 扣除未结话费是什么意思
  • 公司对员工的罚款用途
  • 进项税额已经抵扣会计分录
  • 增资后持股比例计算
  • 库存商品建账
  • 免税发票怎么抵扣
  • 存货跌价准备的计算
  • 工程竣工后发生工程的保修费用入哪个科目?
  • ゆうちょ银行转账步骤
  • 年初建账考虑要点
  • myeclipse连接mysql数据库代码
  • 怎么操作win10系统
  • win8.1 升级
  • ubuntu 18.04怎么用
  • Ubuntu下配置vpn工作环境
  • 电脑键盘上f1到f12快捷键的功能分别是
  • linux系统怎么隐藏文件
  • 什么是从零开始
  • opengl示例
  • 怎么在html中调用js的函数
  • shell获取字符串中的数字
  • python 源码解析
  • unity获取当前位置
  • android listView二级目录选中效果
  • python同一层次的语言必须对齐吗
  • javascript入门教学
  • 开发者共享是什么意思
  • 维修基金交了多少钱怎么查
  • 2021税收分类编码大全
  • 就业失业登记证网上申请
  • 新疆12366网上办税
  • 通用定额发票分经营类型吗
  • 企业房产如何过户给个人
  • 营业税属于地方税
  • 关于企业所得税的说法
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设