位置: IT常识 - 正文

数论笔记(数论电子书下载)

编辑:rootadmin
♠ use C++11 ♠ tip: 函数内必须是用变量来传输引用形参 倍数 若 $a,b,k \in \mathbb N$,且 $a \times k=b$,那么 $b$ 是 $a$ 的倍数,称 $a$ 整除 $b$,记作 $a \mid b$。 $

推荐整理分享数论笔记(数论电子书下载),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:数论讲解,数论ppt,数论ppt,数论笔记part2,数论笔记part2,数论讲义,数论笔记一,数论笔记part2,内容如对您有帮助,希望把文章链接给更多的朋友!

♠ use C++11♠ tip: 函数内必须是用变量来传输引用形参

倍数

若 \(a,b,k \in \mathbb N\),且 \(a \times k=b\),那么 \(b\) 是 \(a\) 的倍数,称 \(a\) 整除 \(b\),记作 \(a \mid b\)。

\([1,n]\in \mathbb N\) 中 \(x \in \mathbb N\) 的倍数有 \(\left \lfloor \dfrac{n}{x} \right \rfloor\) 个。

约数

若 \(a \mid b\),\(a,b\in\mathbb N\),那么 \(a\) 是 \(b\) 的约数。

\(a \in \mathbb N\) 的约数个数是有限的,记作 \(\operatorname d(n)\),\(\in \mathbb Z\)。

数论笔记(数论电子书下载)

快速算一个序列的 \(\operatorname d(n)\):设一个计数数组对应每个数,初始为 0,从左到右计算每个数,对于每个倍数加 1,当整个序列计算完后,计数数组的值是其对应数字的约数个数,时间复杂度 \(\mathcal{O}(n\operatorname{log}n)\)。下面是一个例子以及代码实现:

n 1 2 3 4 5 6d(n) 0 0 0 0 0 0 start +1 +1 +1 +1 +1 +1 step 1 in number 1 0 +1 0 +1 0 +1 step 2 in number 2 0 0 +1 0 0 +1 step 3 in number 3 .....and more 1 2 2 3 2 4 endvoid approximate_number(long long *num,long long &to){for(long long i=1;i<=to;++i){for(long long j=i;j<=to;j+=i){(*(num+j))++;}}}素数

1 不是素数也不是合数。

下面是一串判断 \(n\in \mathbb N\) 是否是素数的代码,时间复杂度 \(\mathcal{O}(\sqrt n)\)。

bool is_prime(long long &n){if(n==1)return false;for(long long i=2;i<=n/i;++i){if(n%i==0)return false;}return true;}计算一个序列每个数是否是素数:朴素筛法,有较多重复判断,时间复杂度 \(\mathcal{O}(n\operatorname{log}n)\);埃式筛法,仅是素数才向后筛,优化朴素筛法,时间复杂度 \(\mathcal{O}(n\operatorname{log log}n)\),接近线性筛。最大公约数

若 \(a,b\in \mathbb N\) 且 \(k \mid a,b \in \mathbb N\),且不存在更大的 \(k\),称 \(k\) 是 \(a,b\) 的最大公约数。

快速求 \(a,b\in \mathbb N\) 的最大公约数,欧几里得定理:\(\gcd(a,b)=\gcd(b,a \bmod b)\)。

已知 \(a,b \in \mathbb N\),可找到 \(x,y \in \mathbb Z\) 使 \(ax +by=\gcd(a,b)\),若 \(ax+by=1\) 有解,则 \(a\) 和 \(b\) 互质。

扩展欧几里得,一定存在 \(x,y\in \mathbb N\) 使贝祖等式 \(ax +by=\gcd(a,b)\)\(\Rightarrow (\left \lfloor a \div b \right \rfloor \times b + a \bmod b) x + by = \gcd(b,a\bmod b)\)\(\Rightarrow (\left \lfloor a \div b \right \rfloor \times x + y) b +(a \bmod b)x\),可得新的方程 \(b \times x'+(a \bmod b)\times y' = \gcd(b,a\bmod b)\) 因此可得 \(\begin{cases}x'=(\left \lfloor a \div b \right \rfloor\times x+y)\\y'=x\end{cases}\),同样倒推可得特解 \(\begin{cases}x=y'\\y=x'-(\left \lfloor a \div b \right \rfloor\times y')\end{cases}\),下面是递归代码实现:

array<long long,3> exgcd(long long &a,long long &b){if(b==0){return {1,0,a};//当b=0时,等式为ax=gcd(a,0),即ax=a//得x=1,y=0}array<long long,3> ans=exgcd(b,a%b);long long temp=ans[0];ans[0]=ans[1];ans[1]=temp-a/b*ans[1];return ans;//ans[0]为x,ans[1]为y,ans[2]为gcd(a,b)}当求得贝祖等式特解 \(x_0,y_0\in \mathbb N\) 后,可得 \(x,y\in \mathbb N\) 通解,设 \(g=\gcd(a,b)\) 通解为 \(\begin{cases}x=x_0+t\times b\div g\\y = y_0- t \times a \div g\end{cases}\),推导过程:\(\begin{cases}ax+by=g\\ax_0+bx_0=g\end{cases}\)\(\Rightarrow (x-x_0)a+(y-y_0)b=0\)\(\Rightarrow (x-x_0)a=(y_0-y)b\)\(\Rightarrow (x-x_0)\dfrac{a}{g}=(y_0-y)\dfrac{b}{g}\)\(\Rightarrow \begin{cases}x-x_0=t\times \dfrac{b}{g}\\y_0-y=t \times \dfrac{a}{g}\end{cases}\)\(\Rightarrow \begin{cases} x=x_0+t\times\dfrac{b}{g}\\y=y_0-t\times\dfrac{a}{g}\end{cases}\),其中 \(x\) 的第一个解是 \(\bigg(x\bmod\dfrac{b}{g}+\dfrac{b}{g}\bigg)\bmod \dfrac{b}{g}\)。模运算

已知 \(a,b,p\in \mathbb N\),\((a+b)\bmod p=(a\bmod p+b\bmod p)\bmod p\),\((a-b)\bmod p=(a\bmod p+b\bmod p)\bmod p\),\((a\times b)\bmod p=(a \bmod p\times b\bmod p)\bmod p\)。

若需要进行除法的模运算,与普通的不同,例子:\(\dfrac{20}{10}\bmod 5=2\)\(\nRightarrow\dfrac{20 \bmod 10}{10\bmod 10}\bmod 5=0\),所以为了求 \((a\div b) \bmod p\),\(a,b,p\in\mathbb N\),需要找到 \(b\) 的乘法逆元 \(x\in\mathbb N\),将算式变成 \((a\times x)\bmod p\)。

已知 \(a,x,m\in \mathbb N\),\(ax \equiv 1\pmod p\)\(\Rightarrow ax \bmod p=1\)\(\Rightarrow ax-\left\lfloor\dfrac{ax}{p}\right\rfloor\times p=1\),称 \(x\) 是关于 \(a\) 的乘法逆元,将 \(-\left\lfloor\dfrac{ax}{p}\right\rfloor\) 用 \(y\) 替代,得 \(ax+py=1\),即找到 \(x\) 的值即可找到 \(a\) 的乘法逆元,也可知 \(a,p\) 必须要互质。

本文链接地址:https://www.jiuchutong.com/zhishi/310160.html 转载请保留说明!

上一篇:基础数据类型之数字和字符串(测验3: 基本数据类型 (第3周))

下一篇:为在线客服系统接入chatGPT(四):chatGPT接口vue网页版,可以联系上下文语境,可以实现自己的chatGPT,附代码(在线客服系统登录)

  • 汽车保养 美容
  • 各行业的税负率表2022
  • 土建工程维修
  • 物业公司物业费收入会计分录
  • 留抵税额账上比申报表多280
  • 已知不含税金额和税额怎么求税率
  • 金税盘发票打印不全
  • 总分机构汇算清缴成功后还需要填表什么报表
  • 利得和损失计入所有者权益
  • 企业纳税成本管理方案
  • 本金加收入减支出等于的是利润吗
  • 红字发票是否需要写进出仓单里
  • 增值税申报表更正情况说明怎么写
  • 债权投资损失准备
  • 关联企业的认定标准司法
  • 小微企业所得税优惠政策最新2022
  • 免税的和不免税的可以开在一张发票上吗
  • 增值税纳税义务人
  • 计提法定盈余公积转入利润分配
  • 多计提的社保费,可否计入营业外收入
  • 超市收取的返利的税收处理
  • 政府奖励如何记账
  • 在Win10系统中卸载最近更新的补丁并重启电脑
  • 运费用会计分录
  • 出纳违规支付承担啥责任?
  • 已认证的发票退货怎么处理
  • 一篇不错的php基础论文
  • 商业会计结转成本
  • autorun.exe
  • 生产物料报废
  • php中几个常用的函数
  • php in
  • 圣诞精灵什么意思
  • 其他债权投资如何进行投资收益的确认的核算?
  • 计提折旧是哪个凭证
  • thinkphp 模块
  • 微信小程序人民法院审核通过多久立案
  • ipcrm命令
  • 企业所得税包含在税金及附加里面吗
  • 增值税进项税加计抵减
  • 新公司建账会计科目
  • 汽车折旧费谁出
  • 路由器无线设置模式哪个更快
  • c语言中的typedef struct
  • 库存商品的科目设置
  • 建筑行业旧项目怎么处理
  • 抚恤金的种类有多少种
  • 管理费用主要核算哪些内容
  • 退回工伤保险的现金流
  • 公司股权变更如何合理避税
  • 村集体经济组织的银行存款可以向外单位或个人出租出借
  • 政府专项补贴资金应列入什么科目
  • 考核员工的罚款计入什么
  • 应交税费核算规定最新
  • 取得工程款发票计入什么会计科目里
  • 收到稳岗补贴要交税吗
  • 转出未交增值税会计处理
  • 其他应付款在借方表示什么
  • 固定资产清理明细账采用什么账簿
  • mysql主界面
  • xp查看系统
  • win8 怎么样
  • 苹果Mac系统怎么切换输入法
  • xp系统不能正常启动怎么修复
  • windows10右键菜单
  • WINDOWS10系统怎样看主板
  • windows查看文件内容的命令
  • 安卓app开发框架模板
  • bash 数值比较
  • shell脚本判断字符串是否为空
  • unity3d性能优化之贴图科普篇
  • unity音频导入设置
  • js跨域请求json数据
  • python3 xlrd
  • Android自定义控件高级进阶与精彩实例
  • javascript面向对象精要pdf下载
  • 全面解析少女时代关系
  • javascript入门基础
  • 黄山市国家税务局倪国初
  • 零税率,免税不免增值税
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设