位置: 编程技术 - 正文
推荐整理分享OpenGl 第七章:纹理映射 (texture mapping)(opengl教程48讲),希望有所帮助,仅作参考,欢迎阅读内容。
文章相关热门搜索词:opengl 实现,opengl软件实现,opengll,opengl,opengll,opengl,opengl,opengl教程48讲,内容如对您有帮助,希望把文章链接给更多的朋友!
本章你将学到
纹理映射基础知识纹理坐标纹理对象及绑定纹理过滤mipmap和自动生成mipmap纹理参数, 外包模式, 细节级别纹理环境和纹理函数Table of Contents1 概述2 预备知识: 纹理坐标3 使用纹理映射3.1 纹理对象3.2 纹理绑定3.3 删除纹理对象3.4 驻留纹理3.5 纹理优先级4 指定纹理4.1 2D 纹理4.2 1D 纹理4.3 3D 纹理4.4 Cube Map 纹理5 纹理过滤6 简单例程1 概述概括的说, 纹理映射机制允许你将一个图像关联到一个多边形上,从而呈现出真实视觉效果。例如, 你可以将书的封面图像应用到一个方形上, 这样这个方形看起来就像是一本书了。 你可以将地球的地图通过纹理映射应用到一个球体上, 那么这个球体就是一个3D的具真实感的地球了。纹理映射在当今的3D图形应用上处处皆是。今天的游戏都是通过纹理映射来作为虚拟真实的第一个步骤。
纹理映射是一个二维的数组。数组中的每一项称之为纹理点( texel )。 虽然这个数组是二维的, 但是可以映射到非二维的对象上, 如球体或者其他的 3D 对象模型上。
比较常见的是, 开发者在他们的图形应用中运用二维纹理, 当然一维或者三维的纹理也并非未闻。二维纹理有宽度和宽度决定二维。一维纹理也有宽度和高度, 只是高度被设为 1(单位:像素 pixel). 而三维纹理不仅具有宽度和高度, 还有深度, 所以三维为纹理又称为立体纹理。我们讨论的主要是二维纹理。
2 预备知识: 纹理坐标在 OpenGl 中是通过指定纹理坐标来将纹理映射到多边形上去的. 在纹理坐标系中, 左下角是 (0,0), 右上角是 (1,1). 2D 纹理的坐标中通过指定 (s,t) (s为x轴上,t为y轴上, 取0~1). 1D, 3D, 4D纹理坐标系中对应的需要指定 (s), (s,t,r), (s,t, r,q).
纹理坐标需要通过函数 glTexCoord() 来设置, 此函数:
void glTexCoord{}{sifd}(TYPE coords);void glTexCoord{}{sifd}v(TYPE coords);如将 2D 纹理坐标设为 (0.2, 0.4):
?1glTexCoord2f(0.2f,0.4f);每次通过 glVertex() 指定一个顶点时, 当前的纹理坐标会被应用到这个点上. 所以每指定一个新的顶点, 需要同时修改纹理坐标:
?glBegin(GL_POLYGON); glTexCoord2f(0.0f, 0.0f); glVertex3f(-0.5f, 0.5f, 0.5f);//左下角 glTexCoord2f(1.0f, 0.0f); glVertex3f(0.5f, 0.5f, 0.5f); // 右下角 glTexCoord2f(1.0f, 1.0f); glVertex3f(0.5f, 0.5f, -0.5f);// 右上角 glTexCoord2f(0.0f, 1.0f); glVertex3f(-0.5f, 0.5f, -0.5f);// 左上角glEnd();至此, 我们知道了纹理坐标如何赋.且看如何创建纹理:
3 使用纹理映射纹理就是应用到多边形上的图像. 这些图像可以从文件中加载, 或是在内存中生成. 一旦你将图像数据加载到了内存中, 你需要指定其为纹理映射来使用它. 指定其为纹理映射, 首先需要生成一个纹理对象, 其中存储着纹理的诸如图像数据, 如何应用等信息.
纹理是一个OpenGL状态, 因而通过 glEnable() 和 glDisable() 来开闭, 参数是 GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, GL_TEXTURE_CUBE_MAP.
3.1 纹理对象纹理对象是内部数据类型, 存储着纹理数据和选项等. 你不能直接访问它, 但是可以通过一个整数的 ID 来作为其句柄 (handler) 来跟踪之. 为了分配到一个唯一的 ID, OpenGL 提供了glGenTextures() 函数来获取一个有效的 ID 标识:
void glGenTexture(Glsizei n, GLuint *texture);texture 是一个数组, 用于存储分配到的n个ID. 在调用一次 glGenTextures() 后, 会将分配到的 ID 标识为'已用', 虽然直到绑定后才真正为'已用'.
分配3个纹理对象 ID:
?unsignedinttextureObjects[3];glGenTexture(3, textureObjects);3.2 纹理绑定在第一次绑定一个纹理对象时, 会将一系列初始来适应你的应用. 函数 glBindTexture() 用于绑定操作:
void glBindTexture(GLenum target, GLuint texture);target 指定了纹理类型: GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, GL_TEXTURE_CUBE_MAP. texure 是你希望绑定的纹理对象的 ID.
一个被绑定的纹理对象直到被删除,或被另外的纹理对象绑定到 target 上才被解除绑定. 当一个纹理对象绑定到 target 上后, OpenGL 的后续的纹理操作都是基于这个纹理对象的。
?glBindTexture (GL_TEXTURE_2D, textureObject[0]);// 后面的对 GL_TEXTURE_2D 的纹理操作影响 textureObject[0] glBindTexture (GL_TEXTURE_3D, textureObject[1]);// 后面的对 GL_TEXTURE_3D 的纹理操作影响 textureObject[1]// 对 GL_TEXTURE_2D 的纹理操作依然影响 textureObject[0] glBindTexture (GL_TEXTURE_2D, textureObject[2]);// 后面的对 GL_TEXTURE_2D 的纹理操作影响 textureObject[2]// 对 GL_TEXTURE_3D 的纹理操作依然影响 textureObject[1]3.3 删除纹理对象创建一个纹理对象后, OpenGL为其分配内存, 所以当不再使用一个纹理对象时, 为防止内存泄露, 必须删除. 删除纹理对象的函数: glDeleteTexture() :
void glDeleteTexure(Glsizei n, Gluint *texture);texture 指定了要删除的纹理对象的 ID (n个). 在删除后, texture 中的各个对象 ID 会置为0.
3.4 驻留纹理显卡有一块固定大小的内存区域专门用于存储纹理数据。当数据超量时,会将一部分纹理数据移除到系统内存中(通常是最近最少使用的纹理数据). 当这些移除的纹理被再次使用时,会影响击中率, 因为它们会被再次移入显卡的内存中。你可以查看一个纹理对象是否驻留在显卡内存中未被移出, 通过函数 glAreTexturesResident() :
GLboolean glAreTexturesResident (GLsizei n, GLuint *textures, GLboolean *residents);texture 中每一项纹理对象的驻留情况会存储在 resident 参数中返回。 若 textures 中有一项纹理对象不在内存驻留内存, 函数会返回 GL_FALSE.
3.5 纹理优先级纹理的优先级是针对驻留显卡内存而言。优先级设置函数 glPrioritizeTextures() :
void glPrioritizeTextures (GLsizei n, GLuint *textures, GLclampf *priorities)前两个参数 textures 和 n 指定了要设置优先级的纹理对象数组。 priorities 是 textures 中每一项纹理对象对应的优先级, priorities 中每一项的优先级取区间是 [0,1], 0为优先级最低, 1 为最高。 glPrioritizeTextures() 函数会忽略掉那些未使用的和优先级要设为 0 的纹理对象。
4 指定纹理OpenGL 提供了三个函数来指定纹理: glTexImage1D(), glTexImage2D(), glTexImage3D(). 这三个版本用于相应维数的纹理, 例如如果纹理是3D纹理,则需要有 glTexImage3D() 来指定。
4.1 2D 纹理 void glTexImage2D (GLenum target, GLint level, GLint internalFormat, GLsizei width, GLsizei height, GLint border, GLenum format, GLenum type, const GLvoid* texels);参数 target 是 GL_TEXTURE_2D (二维纹理) 或 GL_PROXY_TEXTURE_2D (二维代理纹理), 代理纹理暂且不提。
参数 level 指定了纹理映射细节的级别,用在mipmap中。 基本的纹理图像级别为0, 在后面的mipmap部分讲解。
参数 internalFormat 指定了纹理存储在显存中的内部式, 取在下表, 为兼容 OpenGL1.0 internalFormat 可以取 1,2,3,4 分别对应常量 LUMINANCE, LUMINANCE_ALPHA, RGB, RGBA.
纹理内部式式注解GL_ALPHAAlpha GL_DEPTH_COMPONENT深度GL_LUMINCE灰度GL_LUMINANCE_ALPHA灰度和 Alpha GL_INTENSITY亮度GL_RGBRed, Green, Blue三原色GL_RGBARed, Green, Blue 和 Alpha参数 width 和 height 定义了纹理映射的大小,前面已经说过纹理映射就是一个二维数组。 和 glDrawPixels() 一样, 纹理映射的宽度和高度必须是 2 的整数次幂。
参数 border 注明了纹理是否有边框。无边框取为 0, 有边框取为 1, 边框的颜色由 GL_TEXTURE_BORDER_COLOR 选项设置。
接下来的三个参数主要定义了图像数据的式。
参数 format 定义了图像数据数组 texels 中的式。可以取如下:
图像数据数组 texels 式式注解GL_COLOR_INDEX颜色索引GL_DEPTH_COMPONENT深度GL_RED红色像素GL_GREEN绿色像素GL_BLUE蓝色像素GL_ALPHAAlpha GL_RGBRed, Green, Blue 三原色GL_RGBARed, Green, Blue 和 Alpha GL_BGRBlue, Green, Red GL_BGRABlue, Green, Red 和 Alpha GL_LUMINANCE灰度GL_LUMINANCE_ALPHA灰度和 Alpha参数 type 定义了图像数据数组 texels 中的数据类型。可取如下
图像数据数组 texels 中数据类型数据类型注解GL_BITMAP一位(0或1)GL_BYTE带符号8位整形(一个字节)GL_UNSIGNED_BYTE不带符号8位整形(一个字节)GL_SHORT带符号位整形(2个字节)GL_UNSIGNED_SHORT不带符号未整形(2个字节)GL_INT带符号位整形(4个字节)GL_UNSIGNED_INT不带符号位整形(4个字节)GL_FLOAT单精度浮点型(4个字节)GL_UNSIGNED_BYTE_3_3_2压缩到不带符号8位整形:R3,G3,B2GL_UNSIGNED_BYTE_2__3_REV压缩到不带符号8位整形:B2,G3,R3GL_UNSIGNED_SHORT_5_6_5压缩到不带符号位整形:R5,G6,B5GL_UNSIGNED_SHORT_5_6_5_REV压缩到不带符号位整形:B5,G6,R5GL_UNSIGNED_SHORT_4_4_4_4压缩到不带符号位整形:R4,G4,B4,A4GL_UNSIGNED_SHORT_4_4_4_4_REV压缩到不带符号位整形:A4,B4,G4,R4GL_UNSIGNED_SHORT_5_5_5_1压缩到不带符号位整形:R5,G5,B5,A1GL_UNSIGNED_SHORT_1_5_5_5_REV压缩到不带符号位整形:A1,B5,G5,R5GL_UNSIGNED_INT_8_8_8_8压缩到不带符号位整形:R8,G8,B8,A8GL_UNSIGNED_INT_8_8_8_8_REV压缩到不带符号位整形:A8,B8,G8,R8GL_UNSIGNED_INT____2压缩到位整形:R,G,B,A2GL_UNSIGNED_INT_2____REV压缩到位整形:A2,B,G,R你可能会注意到有压缩类型, 先看看 GL_UNSIGNED_BYTE_3_3_2, 所有的 red, green 和 blue 被组合成一个不带符号的8位整形中,在 GL_UNSIGNED_SHORT_4_4_4_4 中是把 red, green , blue 和 alpha 打包成一个不带符号的 short 类型。
最后一个参数是 texels, 这个指针指向实际的图像数据(你自己生成的或是从文件中加载的)。OpenGL 会按照 type 参数指定的式来读取这些数据,
例如, 假设你加载了一个 RGBA 图像到 textureData 中( 宽高为 textureWidth, textureHeight).你想要用它来指定一个纹理, 可以这样做:
?glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA, textureWidth, textureHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, textureData);执行完这个函数后, 纹理会加载,等待被使用。
4.2 1D 纹理1D 纹理其实就是 2D 纹理的特殊形式(高度等于1)。这类纹理常常用来描绘颜色边界从而创造出阴影效果。创建 1D 纹理的函数如下:
void glTExImage1D (GLenum target, GLint level, GLint internalFormat, GLsizei width,GLint border, GLenum format, GLenum type, const GLvoid *texels);函数中的参数同 glTexImage2D(), 不同的是 height 参数没有被给出(因为定1), 参数 target 也需要指定为 *GL_TEXTURE_1D*。
下面是简单的代码, 用于创建个纹理点宽度的 RGBA 纹理:
?unsignedcharimageData[];...glTexImage1D (GL_TEXTURE_1D, 0, GL_RGBA, , 0, GL_RGBA, GL_UNSIGNED_BYTE, imageData);4.3 3D 纹理创建 3D 纹理的函数:
glTexImage3D(GLenum target, GLint level, GLint internalFormat, GLsizei width GLsizei height, GLsizei depth, GLint border, GLenum format, GLenum type, const GLvoid *texels);函数参数同 glTexImage1D() 和 glTexImage2D() 大部分相同,不同的是多了一个深度参数 depth, 指定了纹理的第三维。
下面的代码片段, 用于创建一个 ** 个纹理点的 RGB 纹理:
?...glTexImage3D (GL_TEXTURE_3D, 0, GL_RGB, , , , 0, GL_RGB, GL_UNSIGNED_BYTE, imageData);4.4 Cube Map 纹理一个 Cube Map 纹理是由6个2D纹理组成。对应的, 需要通过 glTexImage2D() 来指定6个 target 参数: GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z.
5 纹理过滤将纹理映射到多边形上, 实际上是将纹理的图像数据空间映射到帧缓冲图像空间上。所以, 你必须保证纹理图像加载完成。 纹理图像被映射到多边形上可能会造成失真。纹理图像映射到多边形上去,屏幕上的一个点可能是纹理点的一个部分(如果视口设置的离纹理很近), 也有可能屏幕上的一个像素点是多个纹理的集合(如果视口设置的足够远). 纹理过滤就是告诉 OpenGL 在纹理到屏幕像素点的映射中如何计算最终显示的图像数据。
在纹理过滤中, 放大器处理一个屏幕像素点代表一个纹理点的一部分的情况;缩小器处理一个像素点代表多个纹理点的情况. 你可以通过下面函数来告诉 OpenGL 怎样处理这两种情况:
void glTexParameter{if}(GLenum target, GLenum pname, T param);void glTexParameter{if}v(GLenum target, GLenum pname, T params);参数 target 指的是纹理目标, 可以是 GL_TEXTURE_1D, GL_TEXTURE_2D*, GL_TEXTURE_3D 或 GL_TEXTURE_CUBE_MAP 。 指定纹理放大过滤器需要指定参数 pname 为 GL_TEXTURE_MAG_FILTER, 指定纹理缩小过滤器需要指定参数 pname 为 GL_TEXTURE_MIN_FILTER.
当指定为 GL_TEXTURE_MAG_FILTER, 参数 param 取 GL_NEAREST 或 GL_LINEAR. 对放大过滤器而言, 使用 GL_NEAREST 将告诉 OpenGL 使用离像素点中心最近的纹理来渲染, 这被称作 点样( point sampling); 使用 GL_LINEAR 告诉 OpenGL 会使用离像素点中心最近的四个纹理的平均来渲染. 这被称作 双线性过滤( bilinear filtering)。
缩小过滤器比放大过滤器的取更广, 下表是指定缩小过滤器时, 参数 param 的取, 下面表中的是为了增强渲染质量。
缩小过滤器的参数过滤参数注解GL_NEAREST使用像素点中心最近的点渲染GL_LINEAR使用双线性过滤GL_NEAREST_MIPMAP_NEAREST GL_NEAREST_MIPMAP_LINEAR GL_LINEAR_MIPMAP_NEAREST GL_LINEAR_MIPMAP_LINEAR在缩小过滤器中, 有4个参数处理mipmap, 这将会在后面的mipmap部分讲解。
默认情况下, 放大过滤器的参数为 GL_LINEAR, 缩小过滤器为 GL_NEAREST_MIPMAP_LINEAR.
在渲染纹理时, OpenGL 会先检查当前的纹理是否加载完成,同时也会处理其他事情,如在选用缩小过滤器的mipmap处理时会验证mipmap的所有级别是否被定义。 如果纹理未完成, 纹理会被禁用。因为缩小过滤器的缺省使用mipmap,所以你必须指定所有的mipmap级别或是将缩小过滤器的参数设为 *GL_LINEAR* 或*GL_NEAREST*.
6 简单例程在初始化函数 init() 中创建了纹理对象, 设定了过滤模式:
?boolCGfxOpenGL::init (){ glClearColor (0.0f, 0.0f, 0.0f, 0.0f); // 启用 2D 纹理 glEnable (GL_TEXTURE_2D); m_textureOne = newCTargaImage; // 加载纹理图像 if(!m_textureOne->Load ("rock.tga")) returnfalse; // 创建纹理对象, glGenTextures (1, &m_textureObjectOne); // 绑定纹理对象 glBindTexture (GL_TEXTURE_2D, m_textureObjectOne); // 设定缩放器的过滤参数 glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); // 为纹理对象指定纹理图像数据 glTExImage2D (GL_TEXTURE_2D, 0, GL_RGB, m_textureOne->GetWidth(), m_textureOne->GetHeight(), 0, GL_RGB, GL_UNSIGNED_BYTE, m_textureOne->GetImage()); // 创建第二个纹理对象 glGenTexture (1, &m_textureObjectTown); glBindTexture (GL_TEXTURE_2D, m_textureObjectTwo); glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexImage2D (GL_TEXTURE_2D, 0, GL_RGB, m_textureOne->GetWidth(), m_textureOne->GetHeight(), 0, GL_TGB, GL_UNSIGNED_BYTE, m_textureOne->GetImage()); // 初始化运动变量 m_zPos = -0.5f; m_zMoveNegative = true; returntrue;}在 init() 函数中, 我们先启用 2D 纹理( glEnable() ), 然后加载图像到 CTargaImage 类中(详见第6章), 然后通过 glGenTextures() 获得一个未被使用的纹理对象, 继而绑定, 指定缩放器的过滤模式, 最后为纹理指定图像数据(通过 glTexImage2D() ). 然后同样的流程创建了第二个纹理对象, 使用了同样的纹理图像数据。只是缩放器的过滤参数做了下更改。
主要的渲染函数有两个 DrawPlane(), Render() :
?voidCGfxOpenGL::DrawPlane (){ glBegin (GL_TRIANGLE_STRIP); glTexCoord2f (1.0, 0.0); glVertex3f (2.0, -2.0, -2.0); glTexCoord2f (0.0, 0.0); glVertex3f (-2.0, -2.0, -2.0); glTexCoord2f (1.0, 1.0); glVertex3f (2.0, -2.0, 2.0); glTexCoord2f (0.0, 1.0); glVertex3f (-2.0, -2.0, 2.0); glEnd();} voidCGfxOpenGL::Render (){ // 清除屏幕和深度缓存 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // 重置当前矩阵 glLoadIdentity (); // 绘制左边的多边形 glPushMatrix (); // glTranslatef (-3.0, 0.0, m_zPos); glRotatef (.0, 1.0, 0.0, 0.0); // 绑定纹理 glBindTexture (GL_TEXTURE_2D, m_textureObjectOne); // 绘制 Plane DrawPlane (); glPopMatrix(); // 同样地, 绘制右边多边形 glPushMatrix (); glTranslatef (3.0, 0.0, m_zPos); glRotatef (.0, 1.0, 0.0, 0.0); glBindTexture (GL_TEXTURE_2D, m_textureObjectTwo); DrawPlane (); glPopMatrix(); }在 DrawPlane() 中, 我们指定了纹理坐标然后绘制多边形的顶点。在 Render() 中,我们先绑定好纹理对象, 然后绘制多边形。
Ubuntu.(X_)上安装Mesa-8.0.4 Ubuntu.(X_)上安装Mesa-8.0.4Postedon--:leon_ALiang阅读()评论(0)编辑收藏艰辛!!!由于最近项目需要接触OpenGL,实现软件渲染,Mesa则是OpenGL的
【学习OpenGL小记之一】 OpenGL开发环境配置 一、开发环境1、操作系统:Windows7(位)2、编程环境:MicrosoftVisualStudio二、环境配置1、库的安装与配置1)下载OpenGL库下载地址:这里可以自己从
在VS中配置Opengl 首先我们需要关于Opengl的一系列文件。传送门:
标签: opengl教程48讲
本文链接地址:https://www.jiuchutong.com/biancheng/369497.html 转载请保留说明!友情链接: 武汉网站建设