位置: 编程技术 - 正文

python制作爬虫爬取京东商品评论教程(python制作爬虫教程)

编辑:rootadmin

推荐整理分享python制作爬虫爬取京东商品评论教程(python制作爬虫教程),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:python制作网络爬虫,python如何做爬虫,用python做爬虫程序,用python做爬虫程序,用python做爬虫程序,python制作网络爬虫,用python做爬虫程序,python做爬虫 怎么样效率最高,内容如对您有帮助,希望把文章链接给更多的朋友!

本篇文章是python爬虫系列的第三篇,介绍如何抓取京东商城商品评论信息,并对这些评论信息进行分析和可视化。下面是要抓取的商品信息,一款女士文胸。这个商品共有红色,黑色和肤色三种颜色, B到D共个尺寸,以及超过条的购买评论。

京东商品评论信息是由JS动态加载的,所以直接抓取商品详情页的URL并不能获得商品评论的信息。因此我们需要先找到存放商品评论信息的文件。这里我们使用Chrome浏览器里的开发者工具进行查找。

具体方法是在商品详情页点击鼠标右键,选择检查,在弹出的开发者工具界面中选择Network,设置为禁用缓存(Disable cache)和只查看JS文件。然后刷新页面。页面加载完成后向下滚动鼠标找到商品评价部分,等商品评价信息显示出来后,在下面Network界面的左侧筛选框中输入productPageComments,这时下面的加载记录中只有一条信息,这里包含的就是商品详情页的商品评论信息。点击这条信息,在右侧的Preview界面中可以看到其中包含了当前页面中的评论信息。(抓取价格信息输入prices)。

复制这条信息,并把URL地址放在浏览器中打开,里面包含了当前页的商品评论信息。这就是我们要抓取的URL地址。 Cookies信息复制到代码中即可,这里我们将Request Cookies信息保存在Cookie中。

抓取商品评论信息

设置完请求的头文件和Cookie信息后,我们开始抓取京东商品评论的信息。前面分析URL的时候说过,URL中包含两个重要的信息,一个是商品ID,另一个是页码。这里我们只抓取一个商品的评论信息,因此商品ID不需要更改。但这个商品的评论有+条,也就是有近页需要抓取,因此页码不是一个固定值,需要在0-之间变化。这里我们将URL分成两部分,通过随机生成页码然后拼接URL的方式进行抓取。

为了使抓取过程看起来更加随机,我们没有从第1页一直抓取到第页。而是使用random生成0-的唯一随机数,也就是要抓取的页码编号。然后再将页码编号与两部分URL进行拼接。这里我们只知道商品有+的评论,但并不知道具体数字,所以抓取范围定位从0-页。

下面是具体的抓取过程,使用for循环每次从0-的随机数中找一个生成页码编号,与两部分的URL进行拼接。生成要抓取的URL地址并与前面设置好的头文件信息和Cookie信息一起发送请求获取页面信息。将获取到的页面信息进行汇总。每次请求间休息5秒针,避免过于频繁的请求导致返回空值。

在抓取的过程中输入每一步抓取的页面URL以及状态。通过下面的截图可以看到,在page参数后面的页码是随机生成的并不连续。

抓取完个页面后,我们还需要对页面进行编码。完成编码后就可以看到其中所包含的中文评论信息了。后面大部分苦逼的工作就是要对这些评论信息进行不断提取和反复的清洗。

这里建议将抓取完的数据存储在本地,后续工作可以直接从本地打开文件进行清洗和分析工作。避免每次都要重新抓取数据。这里我们将数据保存在桌面的page.txt文件中。

读取文件也比较简单,直接open加read函数就可以完成了。

提取信息并进行数据清洗

京东的商品评论中包含了很多有用的信息,我们需要将这些信息从页面代码中提取出来,整理成数据表以便进行后续的分析工作。这里应该就是整个过程中最苦逼的数据提取和清洗工作了。我们使用正则对每个字段进行提取。对于特殊的字段在通过替换等方式进行提取和清洗。

下面是提取的第一个字段userClient,也就是用户发布评论时所使用的设备类型,这类的字段提取还比较简单,一行代码搞定。查看一下提取出来的字段还比较干净。使用同样的方法我们分别提取了以下这些字段的内容。

使用for循环配合替换功能将字段中所有的}替换为空。替换完成后字段看起来干净多了。

productSize字段中包含了胸围和杯罩两类信息,为了获得独立的杯罩信息需要进行二次提取,将杯罩信息单独保存出来。

使用for循环将productSize中的第三个字符杯罩信息提取出来,并保持在cup字段中。

创建评论的日期信息仅依靠正则提取出来的信息还是比较乱,无法直接使用。因此也需要进行二次提取。下面是使用正则提取出的结果。

日期和时间信息处于前个字符,在二次提取中根据这个规律直接提起每个条目的前个字符即可。将日期和时间单独保存为creationTime。

在上一步日期和时间的基础上,我们再进一步提取出单独的小时信息,方法与前面类似,提取日期时间中的第和个字符,就是小时的信息。提取完保存在hour字段以便后续的分析和汇总工作。

最后要提取的是评论内容信息,页面代码中包含图片的评论信息是重复的,因此在使用正则提取完后还需要对评论信息进行去重。

使用if进行判断,排除掉所有包含图片的评论信息,已达到评论去重的目的。

完成所有字段信息的提取和清洗后,将这些字段组合在一起生成京东商品评论数据汇总表。下面是创建数据表的代码。数据表生成后还不能马上使用,需要对字段进行格式设置,例如时间和日期字段和一些包含数值的字段。具体的字段和格式设置依据后续的分析过程和目的。这里我们将creationTime设置为时间格式,并设置为数据表的索引列。将days字段设置为数值格式。

这里建议再次保存清洗和预处理完的数据表。我们这里将数据表保存为csv格式。到了这一步可以选择在Excel中完成后续的数据分析和可视化过程,也可以继续在python中完成。我们这里选择继续在python中完成后续的数据分析和可视化工作。

数据分析及可视化

分月评论数据变化趋势

首先查看京东商品评论的时间变化趋势情况,大部分用户在购买商品后会在天以内进行评论,因此我们可以近似的认为在一个月的时间维度中评论时间的变化趋势代表了用户购买商品的变化趋势。

按月的维度对数据表进行汇总,并提取每个月的nickname的数量。下面是具体的代码和分月数据。

数据范围从年月到年月。使用柱状图对分月数据进行可视化。从图表中可以看到年6月是评论的高峰,也可以近似的认为这个时间段是用户购买该商品的高峰(6月日是京东店庆日)。排除年6月和不完整的月数据,整齐趋势中冬季评论量较低,夏季较高。这是由于该商品的季节属性导致的,超薄胸罩更适合夏天佩戴(这个属性我们是在用户的评论中发现的,在京东的商品介绍中并不明显,只在标题中以”薄杯”说明)。

通过筛选将数据表分为使用移动设备和未使用移动设备两个表格,再分别查看和对比评论变化趋势。

从结果中可以看出使用移动设备进行评论的用户在所有的时间段中都要明显高于使用PC的用户。

小时评论数量变化趋势

按小时维度对评论数据进行汇总,查看用户在小时中的评论变化趋势。这里需要说明的是小时趋势只能反映用户登录京东商城的趋势,并不能近似推断用户购买商品的时间趋势。

python制作爬虫爬取京东商品评论教程(python制作爬虫教程)

从小时评论趋势图来看,发布商品评论的趋势与作息时间一致,并且每日的闲暇时间是发布评论的高峰。如早上的8点,中午的点和晚上的点,是一天小时中的三个评论高峰点。

将小时的评论数量分为移动设备和未使用移动设备,查看并对比这两者的变化趋势情况。

移动设备的评论数量在小时中的各个时间段都要高于PC的评论数量,并且在晚间更加活跃,持续时间高于PC端。这里我们产生了一个疑问,在一天中的工作时间段中,大部分用户都会在电脑旁,但为什么这些时间段里移动设备的评论数量也要高于PC端呢?这是否与胸罩这个产品的私密性有关联。用户不希望别人看到自己购买的商品或评论的内容,所以选择使用移动设备进行评论?

用户客户端分布情况

前面的分析中,我们看到使用移动设备进行评论的用户要远高于PC端的用户,下面我们对用户所使用的设备分布情况进行统计。首先在数据表中按用户设备(userClient)对nickname字段进行计数汇总。

从用户客户端分布情况来看,移动端的设备占大多数,其中使用iphone的用户要高于Android用户。由于微信购物和QQ购物单独被分了出来,无法确定设备,因此单独进行对比。使用微信购物渠道的用户要高于QQ购物。

购买后评论天数分布

在购买后评论天数方面,我们将用户发布评论与购买的时间间隔分为7组,分别为购买后1-5天内,5-天内,-天内,-天内,-天内,-天内,以及大于天。然后统计并对比用户在不同时间区间内发布评论的数量情况。

从图表中看出,购买后5天以内是用户发布评论的高峰,也就我们之前推测评论时间趋势近似于购买时间的依据。随着时间的增加评论数量逐渐下降。

商品评分分布情况

京东商城对商品按5星评分划分为好评,中评和差评三个等级。我们这里来看下用户5星评分的分布情况。在数据表中score字段中的值表示了用户对胸罩产品的打分情况。我们按打分情况对数据进行汇总。

从图表中可以看出,大部分用户对商品的评分是5星。4星以下的几乎没有。但从另一个维度来看,在用户对最有用评论的投票(usefulVoteCount)中得票最多的是一个1星的评论。

用户胸罩尺码分布情况

在胸罩的尺寸方面包含两个信息,一个是胸围尺寸,另一个是罩杯。我们在前面的清洗过程中对杯罩创建了单独的字段。下面只对这个字段进行汇总统计。

从图表中可以看出,评论用户中最多的是B杯罩,其次为C杯罩,D和E的用户数量较少。

胸罩颜色偏好分布

这款胸罩共分为三个颜色,红色,肤色和黑色。我们按颜色对评论数据进行汇总,查看用户对不同胸罩颜色的偏好情况。

从不同颜色的评论数量上来看,大部分用户购买的是肤色,购买红色和黑色的用户数量明显少于肤色。

不同尺码用户对胸罩颜色偏好对比

在前面杯罩尺寸和颜色偏好的基础上,我们将两维度进行交叉分析,查看并对比不同杯罩尺码用户在颜色选择上是有规律或明显差异。这里使用数据透视表,将杯罩尺寸设置为行,颜色设置为列,对nickname进行计数。

从数据透视表中分别提取出不同尺寸杯罩用户购买的颜色数据。

将不同杯罩尺寸用户对颜色的选择分布绘制成四个图表,进行对比和分析。

在下面的图表中,B,C,D,E四个杯罩的用户选择肤色的数量都要高于另外两种颜色。整体差别并不明显。如果非要说有什么差别的话,C杯罩用户更偏好红色?D杯罩更喜欢黑色?这个结论明显站不住脚。但有一点可以说,虽然黑色显瘦但E杯罩的用户中没有人选择黑色。

D&E Cup用户城市分布情况

最后我们再看看下D杯罩和E杯罩用户的城市分布情况,在数据表中并不是所有的评论都有城市信息。因此按城市统计出来的数据可能并不准确,仅供参考。

首先从数据表中筛选出cup值为D和E的数据,并保存在新的数据表中。

在新的数据表中按用户所在城市(userProvince)进行汇总。查看不同城市D和E杯罩的数量。

将汇总结果绘制为图表,从图表来看,数量最多的为未知城市,排除未知城市,北京和广东的数量遥遥领先,其次为四川和河南。

胸罩评论内容语义分析

前面我们分别对数据表中的字段进行了统计和分析,文章最后我们对商品的评论内容进行语义分析,看看大家在这+条评论中都在说些什么。

好好先生购买比例

在人工查看了一些评论内容后,我们发现一些有意思的信息。有一部分评论是老公或男朋友发的,这说明一些好好先生会帮老婆或女友购买胸罩。那么这部分用户的比例有多少呢?

我们把评论中包含有关键词“老婆”和“女朋友”的评论单独保存在出来。

查看这些包含关键词的评论内容,确实是老公和男朋友来购买胸罩并且发布的评论。

经过计算,在这款胸罩产品的评论中,由老公或男朋友购买的比例仅为2.%。

商品评论关键词分析

回归到商品评论分析,我们使用结巴分词对所有胸罩的评论信息进行了分词,并提取了权重最高的关键词列表。

从高权重关键词列表来看,用户评论以正面信息为主,”不错”,”舒服”,”喜欢”等主观感受的正面评论权重较高。

结语

本篇文章我们从商品评论信息的抓取,清洗到分析和数据可视化实现了一个完整的闭环。整个过程中数据的清洗和预处理是最为复杂也是耗时最多的工作。由于抓取的数据量较少,只有+条数据。因此里面的一些结论可能没有代表性,结论也未必准确,仅供参考。

详解python开发环境搭建 虽然网上有很多python开发环境搭建的文章,不过重复造轮子还是要的,记录一下过程,方便自己以后配置,也方便正在学习中的同事配置他们的环境。1.

详解python中xlrd包的安装与处理Excel表格 一、安装xlrd地址下载后,使用pipinstall.whl安装即好。查看帮助:importxlrdhelp(xlrd)Helponpackagexlrd:NAMExlrdPACKAGECONTENTSbiffhbookcompdocformattingformulainfolicencessheettimem

Python脚本获取操作系统版本信息 查看系统版本信息是一件家常便饭的事情,有时候需要将版本信息录入到资产管理系统中,如果每次手动的去查询这些信息再录入系统那么是一件令人

标签: python制作爬虫教程

本文链接地址:https://www.jiuchutong.com/biancheng/382452.html 转载请保留说明!

上一篇:python用模块zlib压缩与解压字符串和文件的方法(python中模块的作用)

下一篇:详解python开发环境搭建(python开发环境有)

  • 金税盘的作用是什么意思
  • 商业保理怎么账务处理
  • 税控减免税额如何做分录
  • 跨区域涉税事项报告表怎么核销
  • 计提社保贷方科目是什么
  • 增值税专用发票使用规定 最新
  • 私营独资企业可以变更法人吗
  • 商业折扣的纳税影响
  • 税务机关如何防范关联企业涉税风险问题
  • 财务报表分析方法有
  • 贷款利息进项税额
  • 人力资源外包服务费计入什么科目
  • 注册资本低于实际投资
  • 自来水公司代收污水处理费账务处理
  • 政府补贴项目申报流程
  • 企业购进材料的会计分录
  • 开了负数发票印花税减掉吗?
  • 给政府开发票如何处理?
  • 增值税普票税额
  • 个人所得税的税率是多少
  • 私人公司老板
  • 固定资产改造更新是否需要计提折旧
  • 多次出库的商品最后一起结账的分录怎么写?
  • linux批量删除
  • 收到投资款怎么处理帐
  • 盘活存量国有资产与轻资产运营
  • php多表联合查询
  • 一个药厂能够生产药品的三个前提条件
  • 无法启用网络发展
  • 投资性房地产减值准备属于什么科目
  • PHP:pg_parameter_status()的用法_PostgreSQL函数
  • 投资利润率用什么表示
  • windows环境下,ping的功能和使用方法
  • 企业接受外单位投入的材料一批,应编制()
  • 业务实际发生没得取得发票怎么做账
  • 库存现金日记账的登记依据
  • YOLOv8(n/s/m/l/x)&YOLOv7(yolov7-tiny/yolov7/yolov7x)&YOLOv5(n/s/m/l/x)不同模型参数/性能对比(含训练及推理速度)
  • echartsgrid属性
  • 自然人办税服务大厅
  • 股票收益缴纳个人所得税吗
  • 计提增值税怎么计提
  • 工会经费税前扣除是什么意思
  • 运杂费可以计入固定资产吗
  • 公司账户收款退回怎么查
  • 电子税务局网开电子发票
  • 应纳税所得额的各项扣除包括什么
  • 季度销售额不超过30万元如何纳税
  • 委外加工物资管理制度
  • 收到待报解预算收入是国家退的税吗
  • 营改增后增加了什么征税项目
  • 小规模纳税人所得税计算
  • 内地汇丰银行账户管理费
  • 购买土地的入账价值包括什么
  • 自产货物用于在建工程账务处理
  • 预收账款过多,税务让说明原因
  • 保险赔偿收入如何减税额
  • 破产清算的程序特点
  • 发票报销流程和条件
  • 管理费用通俗理解
  • 主营业务毛利率和毛利率
  • 收到是怎么写
  • centos6.5安装教程中文
  • solaris syslog
  • win8怎么设置指纹
  • Mac OSX通过homebrew卸载formula的方法
  • centos7怎么安装图形化界面
  • debian修改中文
  • linux系统中安装软件
  • win8怎么设置
  • mac安装win10系统后怎么关掉f1快捷键
  • win10飞行模式开关是灰色的
  • windows7没有桌面图标
  • win10预览设置
  • glimp使用方法
  • javascript+css3开发打气球小游戏完整代码
  • 文件上传的三个条件
  • 关于批处理的说法错误的是
  • python爬虫怎么做
  • 死循环代码
  • 做网页的流程与步骤
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设