位置: 编程技术 - 正文
推荐整理分享深入理解NumPy简明教程---数组1(numpy体会),希望有所帮助,仅作参考,欢迎阅读内容。
文章相关热门搜索词:numpy入门,numpy详解,numpy使用心得,深入理解python,深入理解python,numpy基础教程,numpy使用心得,numpy基础知识,内容如对您有帮助,希望把文章链接给更多的朋友!
目前我的工作是将NumPy引入到Pyston中(一款Dropbox实现的Python编译器/解释器)。在工作过程中,我深入接触了NumPy源码,了解其实现并提交了PR修复NumPy的bug。在与NumPy源码以及NumPy开发者打交道的过程中,我发现当今中文NumPy教程大部分都是翻译或参考英文文档,因此导致了许多疏漏。比如NumPy数组中的broadcast功能,几乎所有中文文档都翻译为“广播”。而NumPy的开发者之一,回复到“broadcast is a compound -- native English speakers can see that it's " broad" + "cast" = "cast (scatter, distribute) broadly, I guess "cast (scatter, distribute) broadly" probably is closer to the meaning(NumPy中的含义)"。有鉴于此,我打算启动一个项目,以我对NumPy使用以及源码层面的了解编写一个系列的教程。
NumPy数组
NumPy数组是一个多维数组对象,称为ndarray。其由两部分组成:
实际的数据 描述这些数据的元数据大部分操作仅针对于元数据,而不改变底层实际的数据。
关于NumPy数组有几点必需了解的:
NumPy数组的下标从0开始。 同一个NumPy数组中所有元素的类型必须是相同的。NumPy数组属性
在详细介绍NumPy数组之前。先详细介绍下NumPy数组的基本属性。NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推。在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是NumPy中的轴(axes),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。
NumPy的数组中比较重要ndarray对象属性有:
ndarray.ndim:数组的维数(即数组轴的个数),等于秩。最常见的为二维数组(矩阵)。 ndarray.shape:数组的维度。为一个表示数组在每个维度上大小的整数元组。例如二维数组中,表示数组的“行数”和“列数”。ndarray.shape返回一个元组,这个元组的长度就是维度的数目,即ndim属性。 ndarray.size:数组元素的总个数,等于shape属性中元组元素的乘积。 ndarray.dtype:表示数组中元素类型的对象,可使用标准的Python类型创建或指定dtype。另外也可使用前一篇文章中介绍的NumPy提供的数据类型。 ndarray.itemsize:数组中每个元素的字节大小。例如,一个元素类型为float的数组itemsiz属性值为8(float占用个bits,每个字节长度为8,所以/8,占用8个字节),又如,一个元素类型为complex的数组item属性为4(/8)。 ndarray.data:包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。创建数组
先来介绍创建数组。创建数组的方法有很多。如可以使用array函数从常规的Python列表和元组创造数组。所创建的数组类型由原序列中的元素类型推导而来。
使用array函数创建时,参数必须是由方括号括起来的列表,而不能使用多个数值作为参数调用array。
可使用双重序列来表示二维的数组,三重序列表示三维数组,以此类推。
可以在创建时显式指定数组中元素的类型
通常,刚开始时数组的元素未知,而数组的大小已知。因此,NumPy提供了一些使用占位符创建数组的函数。这些函数有助于满足除了数组扩展的需要,同时降低了高昂的运算开销。
用函数zeros可创建一个全是0的数组,用函数ones可创建一个全为1的数组,函数empty创建一个内容随机并且依赖与内存状态的数组。默认创建的数组类型(dtype)都是float。
可以哟娜特d.dtype.itemsize来查看数组中元素占用的字节数目。
也可以自己制定数组中元素的类型
NumPy提供一个类似arange的函数返回一个数列形式的数组:
以开始,差值为5的等差数列。该函数不仅接受整数,还接受浮点参数:
当arange使用浮点数参数时,由于浮点数精度有限,通常无法预测获得的元素个数。因此,最好使用函数linspace去接收我们想要的元素个数来代替用range来指定步长。linespace用法如下,将在通用函数一节中详细介绍。
数组中的元素是通过下标来访问的,可以通过方括号括起一个下标来访问数组中单一一个元素,也可以以切片的形式访问数组中多个元素。关于切片访问,将在切片一节介绍。
知识点:NumPy中的数据类型
对于科学计算来说,Python中自带的整型、浮点型和复数类型远远不够,因此NumPy中添加了许多数据类型。如下:
NumPy中的基本数据类型
NumPy中的基本数据类型 名称 描述 bool 用一个字节存储的布尔类型(True或False) inti 由所在平台决定其大小的整数(一般为int或int) int8 一个字节大小,- 至 int 整数,- 至 int 整数,-2 ** 至 2 ** -1 int 整数,-2 ** 至 2 ** - 1 uint8 无符号整数,0 至 uint 无符号整数,0 至 uint 无符号整数,0 至 2 ** - 1 uint 无符号整数,0 至 2 ** - 1 float 半精度浮点数:位,正负号1位,指数5位,精度位 float 单精度浮点数:位,正负号1位,指数8位,精度位 float或float 双精度浮点数:位,正负号1位,指数位,精度位 complex 复数,分别用两个位浮点数表示实部和虚部 complex或complex 复数,分别用两个位浮点数表示实部和虚部
NumPy类型转换方式如下:
许多函数的参数中可以指定参数的类型,当然,这个类型参数是可选的。如下:
输出数组
当输出一个数组时,NumPy以特定的布局用类似嵌套列表的形式显示:
第一行从左到右输出 每行依次自上而下输出 每个切片通过一个空行与下一个隔开 一维数组被打印成行,二维数组成矩阵,三维数组成矩阵列表。reshape将在下一篇文章中介绍
如果一个数组太长,则NumPy自动省略中间部分而只打印两端的数据:
可通过设置printoptions参数来禁用NumPy的这种行为并强制打印整个数组。
这样,输出时数组的所有元素都会显示出来。
标签: numpy体会
本文链接地址:https://www.jiuchutong.com/biancheng/382456.html 转载请保留说明!友情链接: 武汉网站建设