位置: IT常识 - 正文

涨点技巧:注意力机制---Yolov8引入CBAM、GAM、Resnet_CBAM(涨点是什么意思)

编辑:rootadmin
涨点技巧:注意力机制---Yolov8引入CBAM、GAM、Resnet_CBAM  1.计算机视觉中的注意力机制

推荐整理分享涨点技巧:注意力机制---Yolov8引入CBAM、GAM、Resnet_CBAM(涨点是什么意思),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:股市涨点是什么意思,股票涨点什么意思,股票涨点什么意思,起涨点买入法,涨点怎么计算,涨点是什么意思,抓住股票起涨点,股票涨点,内容如对您有帮助,希望把文章链接给更多的朋友!

一般来说,注意力机制通常被分为以下基本四大类:

通道注意力 Channel Attention

空间注意力机制 Spatial Attention

时间注意力机制 Temporal Attention

分支注意力机制 Branch Attention

1.1.CBAM:通道注意力和空间注意力的集成者

轻量级的卷积注意力模块,它结合了通道和空间的注意力机制模块

论文题目:《CBAM: Convolutional Block Attention Module》 论文地址:  https://arxiv.org/pdf/1807.06521.pdf

上图可以看到,CBAM包含CAM(Channel Attention Module)和SAM(Spartial Attention Module)两个子模块,分别进行通道和空间上的Attention。这样不只能够节约参数和计算力,并且保证了其能够做为即插即用的模块集成到现有的网络架构中去。

1.2 GAM:Global Attention Mechanism涨点技巧:注意力机制---Yolov8引入CBAM、GAM、Resnet_CBAM(涨点是什么意思)

超越CBAM,全新注意力GAM:不计成本提高精度! 论文题目:Global Attention Mechanism: Retain Information to Enhance Channel-Spatial Interactions 论文地址:https://paperswithcode.com/paper/global-attention-mechanism-retain-information

从整体上可以看出,GAM和CBAM注意力机制还是比较相似的,同样是使用了通道注意力机制和空间注意力机制。但是不同的是对通道注意力和空间注意力的处理。​

1.3 ResBlock_CBAM

CBAM结构其实就是将通道注意力信息核空间注意力信息在一个block结构中进行运用。

在resnet中实现cbam:即在原始block和残差结构连接前,依次通过channel attention和spatial attention即可。

1.4性能评价

 2.Yolov8加入CBAM、GAM

2.1 CBAM加入modules.py中(相当于yolov5中的common.py)class ChannelAttention(nn.Module): # Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet def __init__(self, channels: int) -> None: super().__init__() self.pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True) self.act = nn.Sigmoid() def forward(self, x: torch.Tensor) -> torch.Tensor: return x * self.act(self.fc(self.pool(x)))class SpatialAttention(nn.Module): # Spatial-attention module def __init__(self, kernel_size=7): super().__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.act = nn.Sigmoid() def forward(self, x): return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1)))class CBAM(nn.Module): # Convolutional Block Attention Module def __init__(self, c1, kernel_size=7): # ch_in, kernels super().__init__() self.channel_attention = ChannelAttention(c1) self.spatial_attention = SpatialAttention(kernel_size) def forward(self, x): return self.spatial_attention(self.channel_attention(x))

2.2 GAM_Attention加入modules.py中:

def channel_shuffle(x, groups=2): ##shuffle channel # RESHAPE----->transpose------->Flatten B, C, H, W = x.size() out = x.view(B, groups, C // groups, H, W).permute(0, 2, 1, 3, 4).contiguous() out = out.view(B, C, H, W) return outclass GAM_Attention(nn.Module): # https://paperswithcode.com/paper/global-attention-mechanism-retain-information def __init__(self, c1, c2, group=True, rate=4): super(GAM_Attention, self).__init__() self.channel_attention = nn.Sequential( nn.Linear(c1, int(c1 / rate)), nn.ReLU(inplace=True), nn.Linear(int(c1 / rate), c1) ) self.spatial_attention = nn.Sequential( nn.Conv2d(c1, c1 // rate, kernel_size=7, padding=3, groups=rate) if group else nn.Conv2d(c1, int(c1 / rate), kernel_size=7, padding=3), nn.BatchNorm2d(int(c1 / rate)), nn.ReLU(inplace=True), nn.Conv2d(c1 // rate, c2, kernel_size=7, padding=3, groups=rate) if group else nn.Conv2d(int(c1 / rate), c2, kernel_size=7, padding=3), nn.BatchNorm2d(c2) ) def forward(self, x): b, c, h, w = x.shape x_permute = x.permute(0, 2, 3, 1).view(b, -1, c) x_att_permute = self.channel_attention(x_permute).view(b, h, w, c) x_channel_att = x_att_permute.permute(0, 3, 1, 2) # x_channel_att=channel_shuffle(x_channel_att,4) #last shuffle x = x * x_channel_att x_spatial_att = self.spatial_attention(x).sigmoid() x_spatial_att = channel_shuffle(x_spatial_att, 4) # last shuffle out = x * x_spatial_att # out=channel_shuffle(out,4) #last shuffle return out

2.3 ResBlock_CBAM加入modules.py中:

class ResBlock_CBAM(nn.Module): def __init__(self, in_places, places, stride=1, downsampling=False, expansion=4): super(ResBlock_CBAM, self).__init__() self.expansion = expansion self.downsampling = downsampling self.bottleneck = nn.Sequential( nn.Conv2d(in_channels=in_places, out_channels=places, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(places), nn.LeakyReLU(0.1, inplace=True), nn.Conv2d(in_channels=places, out_channels=places, kernel_size=3, stride=stride, padding=1, bias=False), nn.BatchNorm2d(places), nn.LeakyReLU(0.1, inplace=True), nn.Conv2d(in_channels=places, out_channels=places * self.expansion, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(places * self.expansion), ) self.cbam = CBAM(c1=places * self.expansion, c2=places * self.expansion, ) if self.downsampling: self.downsample = nn.Sequential( nn.Conv2d(in_channels=in_places, out_channels=places * self.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(places * self.expansion) ) self.relu = nn.ReLU(inplace=True) def forward(self, x): residual = x out = self.bottleneck(x) out = self.cbam(out) if self.downsampling: residual = self.downsample(x) out += residual out = self.relu(out) return out

2.4 CBAM、GAM_Attention、ResBlock_CBAM加入tasks.py中(相当于yolov5中的yolo.py)

from ultralytics.nn.modules import (C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, Classify, Concat, Conv, ConvTranspose, Detect, DWConv, DWConvTranspose2d, Ensemble, Focus, GhostBottleneck, GhostConv, Segment,CBAM, GAM_Attention , ResBlock_CBAM)

def parse_model(d, ch, verbose=True):函数中

if m in (Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x , CBAM , GAM_Attention ,ResBlock_CBAM):

2.4 CBAM、GAM修改对应yaml

2.4.1 CBAM加入yolov8

# Ultralytics YOLO 🚀, GPL-3.0 license# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parametersnc: 80 # number of classesscales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n' # [depth, width, max_channels] n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbonebackbone: # [from, repeats, module, args] - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4 - [-1, 3, C2f, [128, True]] - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8 - [-1, 6, C2f, [256, True]] - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16 - [-1, 6, C2f, [512, True]] - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32 - [-1, 3, C2f, [1024, True]] - [-1, 1, SPPF, [1024, 5]] # 9# YOLOv8.0n headhead: - [-1, 1, nn.Upsample, [None, 2, 'nearest']] - [[-1, 6], 1, Concat, [1]] # cat backbone P4 - [-1, 3, C2f, [512]] # 12 - [-1, 1, CBAM, [512]] - [-1, 1, nn.Upsample, [None, 2, 'nearest']] - [[-1, 4], 1, Concat, [1]] # cat backbone P3 - [-1, 3, C2f, [256]] # 16 (P3/8-small) - [-1, 1, CBAM, [256]] - [-1, 1, Conv, [256, 3, 2]] - [[-1, 13], 1, Concat, [1]] # cat head P4 - [-1, 3, C2f, [512]] # 20 (P4/16-medium) - [-1, 1, CBAM, [512]] - [-1, 1, Conv, [512, 3, 2]] - [[-1, 9], 1, Concat, [1]] # cat head P5 - [-1, 3, C2f, [1024]] # 24 (P5/32-large) - [-1, 1, CBAM, [1024]] - [[17, 21, 25], 1, Detect, [nc]] # Detect(P3, P4, P5)

2.4.2 GAM加入yolov8

# Ultralytics YOLO 🚀, GPL-3.0 license# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parametersnc: 80 # number of classesscales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n' # [depth, width, max_channels] n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbonebackbone: # [from, repeats, module, args] - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4 - [-1, 3, C2f, [128, True]] - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8 - [-1, 6, C2f, [256, True]] - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16 - [-1, 6, C2f, [512, True]] - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32 - [-1, 3, C2f, [1024, True]] - [-1, 1, SPPF, [1024, 5]] # 9# YOLOv8.0n headhead: - [-1, 1, nn.Upsample, [None, 2, 'nearest']] - [[-1, 6], 1, Concat, [1]] # cat backbone P4 - [-1, 3, C2f, [512]] # 12 - [-1, 1, GAM_Attention, [512,512]] - [-1, 1, nn.Upsample, [None, 2, 'nearest']] - [[-1, 4], 1, Concat, [1]] # cat backbone P3 - [-1, 3, C2f, [256]] # 16 (P3/8-small) - [-1, 1, GAM_Attention, [256,256]] - [-1, 1, Conv, [256, 3, 2]] - [[-1, 13], 1, Concat, [1]] # cat head P4 - [-1, 3, C2f, [512]] # 20 (P4/16-medium) - [-1, 1, GAM_Attention, [512,512]] - [-1, 1, Conv, [512, 3, 2]] - [[-1, 9], 1, Concat, [1]] # cat head P5 - [-1, 3, C2f, [1024]] # 24 (P5/32-large) - [-1, 1, GAM_Attention, [1024,1024]] - [[17, 21, 25], 1, Detect, [nc]] # Detect(P3, P4, P5)
本文链接地址:https://www.jiuchutong.com/zhishi/289679.html 转载请保留说明!

上一篇:最贵的微博是什么(史上最贵的微博)

下一篇:我找到了 4 个 Midjourney 的免费替代品,停止为 Midjourney 付费,有免费的 AI 替代品(我找到了这个)

  • 小规模多计提增值税税率
  • 购买软件无形资产
  • 发票跨季度可以用吗
  • 增值税 普通税
  • 工资 小数点
  • 一般企业需要缴纳的税种
  • 营业收入管理也是企业财务管理的基本内容
  • 暂估入库商品用什么科目
  • 预付账款冲减费用
  • 装修未付款的会计分录
  • 冲回多提所得税
  • 个人去税务局开票流程
  • 一般纳税人当月只有进项没有销项怎么做账
  • 预收账款与预付账款均属于负债
  • 关于进项税额转出的规定
  • 物管费开票可以开公司名称吗
  • 个人所得税中薪资与实际工资有什么差别
  • 逃避的概念
  • 工资里税前扣款是什么意思
  • 开票含税和不含税怎么切换视频讲解
  • 公司买回来做样衣的服装怎么做会计分录?
  • 应收账款核销会计处理
  • 增值税普通发票有什么用
  • 1697508645
  • 增值税专用发票的税率是多少啊
  • macxi
  • 坏账准备年末余额怎么计算
  • 过路费进项税抵扣填在纳税申报的哪行
  • 家庭承包发包方的权利和义务
  • linux子网掩码自动变成24
  • win7系统任务计划在哪里
  • 接受捐赠的增值税要交企业所得税吗
  • 陈列费用明细表怎么做
  • 出差餐补如何做账
  • vue过滤器可以异步吗
  • 增值税专用发票的税率是多少啊
  • 购进原材料用于生产免税产品
  • 快递怎么做账单
  • 注册一个公司没有流水可以吗
  • 企业的固定资产因自然灾害产生的净损失计入
  • 织梦cms要钱吗
  • mongodb cond
  • 土地出让金抵扣进项税
  • 企业办理税务注销需要什么资料
  • PostgreSQL中关闭死锁进程的方法
  • 固定资产净残值和净值的区别
  • 为什么收到要发1
  • 预期信用损失率的确认依据和过程
  • 印花税的计算公式与计算注意事项
  • 福利费需要通过应付职工薪酬吗
  • 产品的质量监督部门是指
  • 货币资金里的其他货币资金
  • 政府补助计入资本公积吗
  • 房产公司增值税专用发票
  • 福利费的概念是指
  • 小规模附加税优惠政策最新2023
  • 收到了对方的作业怎么办
  • 工资计入会计科目
  • 哪些发票必须注销
  • server2012打开sqlserver
  • xboxone怎么设置中文
  • win7系统如何打开
  • win10怎么添加
  • 怎么看mac的硬盘型号
  • 获取方法
  • win10如何彻底清理
  • kill强制结束进程的参数
  • win7中文显示问号
  • win10系统虚拟内存
  • linux系统的服务器,重启之后运算速度变慢
  • javascript入门教程
  • Unity3D游戏开发基础
  • python 数独破解器
  • import和export区别
  • 内蒙古电子税务局app官方下载
  • 生猪屠宰企业报价
  • 企业滞纳金怎么算 计算公式
  • 欠款抵押房产可以直接过户吗
  • 青岛振兴税务师招聘
  • portal
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设