位置: IT常识 - 正文

Diffusion-GAN: Training GANs with Diffusion 解读

编辑:rootadmin
Diffusion-GAN: Training GANs with Diffusion 解读

推荐整理分享Diffusion-GAN: Training GANs with Diffusion 解读,希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!

 Diffusion-GAN: 将GAN与diffusion一起训练 

paper:https://arxiv.org/abs/2206.02262

code:GitHub - Zhendong-Wang/Diffusion-GAN: Official PyTorch implementation for paper: Diffusion-GAN: Training GANs with Diffusion

  第一行从左向右看是diffusion forward的过程,不断由 real image 进行 diffusion,第三行从右向左看是由noise逐步恢复成fake image的过程,第二行是鉴别器D,D对每一个timestep都进行鉴别。 

 Figure 1: Flowchart for Diffusion-GAN. The top-row images represent the forward diffusion process of a real image, while the bottom-row images represent the forward diffusion process of a generated fake image. The discriminator learns to distinguish a diffused real image from a diffused fake image at all diffusion steps.

in Figure 1. In Diffusion-GAN, the input to the diffusion process is either a real or a generated image, and the diffusion process consists of a series of steps that gradually add noise to the  image. The number of diffusion steps is not fixed, but depends on the data and the generator. We also design the diffusion process to be differentiable, which means that we can compute the derivative of the output with respect to the input. This allows us to propagate the gradient from the discriminator to the generator through the diffusion process, and update the generator accordingly. Unlike vanilla GANs, which compare the real and generated images directly, Diffusion-GAN compares the noisy versions of them, which are obtained by sampling from the Gaussian mixture distribution over the diffusion steps, with the help of our timestep-dependent discriminator. This distribution has the property that its components have different noise-to-data ratios, which means that some components add more noise than others. By sampling from this distribution, we can achieve two benefits: first, we can stabilize the training by easing the problem of vanishing gradient, which occurs when the data and generator distributions are too different; second, we can augment the data by creating different noisy versions of the same image, which can improve the data efficiency and the diversity of the generator. We provide a theoretical analysis to support our method, and show that the min-max objective function of Diffusion-GAN, which measures the difference between the data and generator distributions, is continuous and differentiable everywhere. This means that the generator in theory can always receive a useful gradient from the discriminator, and improve its performance.【G可以从D收到有用的梯度,从而提升G的性能】

主要贡献:

1) We show both theoretically and empirically how the diffusion process can be utilized to provide a model- and domain-agnostic differentiable augmentation, enabling data-efficient and leaking-free stable GAN training.【稳定了GAN的训练】 2) Extensive experiments show that Diffusion-GAN boosts the stability and generation performance of strong baselines, including StyleGAN2 , Projected GAN , and InsGen , achieving state-of-the-art results in synthesizing photo-realistic images, as measured by both the Fréchet Inception Distance (FID)  and Recall score.【diffusion提升了原始只有GAN组成的框架的性能,例如styleGAN2,Projected GAN】

Diffusion-GAN: Training GANs with Diffusion 解读

Figure 2: The toy example inherited from Arjovsky et al. [2017]. The first row plots the distributions of data with diffusion noise injected for t. The second row shows the JS divergence and the optimal discriminator value with and without our noise injection. 

Figure 4: Plot of adaptively adjusted maximum diffusion steps T and discriminator outputs of Diffusion-GANs. 

To investigate how the adaptive diffusion process works during training, we illustrate in Figure 4 the convergence of the maximum timestep T in our adaptive diffusion and discriminator outputs. We see that T is adaptively adjusted: The T for Diffusion StyleGAN2 increases as the training goes while the T for Diffusion ProjectedGAN first goes up and then goes down. Note that the T is adjusted according to the overfitting status of the discriminator. The second panel shows that trained with the diffusion-based mixture distribution, the discriminator is always well-behaved and provides useful learning signals for the generator, which validates our analysis in Section 3.4 and Theorem 1.

如图4左所示,随着训练过程的变化,扩散的timestep T也会自适应的改变(T通过鉴别器D过拟合的状态而改变); 如图4右所示,用基于扩散的混合分布训练的鉴别器总是表现良好,并为生成器G提供有用的学习信号。

Effectiveness of Diffusion-GAN for domain-agnostic augmentation(未知域增强的有效性)

25-Gaussians Example.

We conduct experiments on the popular 25-Gaussians generation task. The 25-Gaussians dataset is a 2-D toy data, generated by a mixture of 25 two-dimensional Gaussian distributions. Each data point is a 2-dimensional feature vector. We train a small GAN model, whose generator and discriminator are both parameterized by multilayer perceptrons (MLPs), with two 128-unit hidden layers and LeakyReLu nonlinearities.

Figure 5: The 25-Gaussians example. We show the true data samples, the generated samples from vanilla GANs, the discriminator outputs of the vanilla GANs, the generated samples from our Diffusion-GAN, and the discriminator outputs of Diffusion-GAN. 

(1)groundtruth数据集的数据分布,在25个Gaussians example均匀分布; (2)vanilla GANs的输出结果产生了mode collapsing,只在几个model上生成数据; (3)vanilla GANs鉴别器输出很快就会彼此分离。这意味着发生了鉴别器的强烈过拟合,使得鉴别器停止为发生器提供有用的学习信号。 (4)Diffusion-GAN在25个example上均匀分布,意味着它在所有的model上学到了采样分布; (5)Diffusion-GAN的鉴别器输出,D在持续的为G提供有用的学习信号

我们从两个角度来解释这种改进: 首先,non-leaking augmentation(无泄漏增强)有助于提供关于数据空间的更多信息;第二,自适应调整的基于扩散的噪声注入,鉴别器表现良好。

关于 Difffferentiable augmentation. (可微分增强)

As Diffusion-GAN transforms both the data and generated samples before sending them to the discriminator, we can also relate it to differentiable augmentation proposed for data-efficient GAN training. Karras et al introduce a stochastic augmentation pipeline with 18 transformationsand develop an adaptive mechanism for controlling the augmentation probability. Zhao et al. [2020] propose to use Color + Translation + Cutout as differentiable augmentations for both generated and real images.

While providing good empirical results on some datasets, these augmentation methods are developed with domain-specific knowledge and have the risk of leaking augmentation  into generation [Karras et al., 2020a]. As observed in our experiments, they sometime worsen the results when applied to a new dataset, likely because the risk of augmentation leakage overpowers the benefits of enlarging the training set, which could happen especially if the training set size is already sufficiently large.(在数据量足够大的情况下,数据增强带来的负面效果可能大于正面效果)

By contrast, Diffusion-GAN uses a differentiable forward diffusion process to stochastically transform the data and can be considered as both a domain-agnostic and a model-agnostic augmentation method. In other words, Diffusion-GAN can be applied to non-image data or even latent features, for which appropriate data augmentation is difficult to be defined, and easily plugged into an existing GAN to improve its generation performance. Moreover, we prove in theory and show in experiments that augmentation leakage is not a concern for Diffusion-GAN. Tran et al. [2021] provide a theoretical analysis for deterministic non-leaking transformation with differentiable and invertible mapping functions. Bora et al. [2018] show similar theorems to us for specific stochastic transformations, such as Gaussian Projection, Convolve+Noise, and stochastic Block-Pixels, while our Theorem 2 includes more satisfying possibilities as discussed in Appendix B.

本文链接地址:https://www.jiuchutong.com/zhishi/294494.html 转载请保留说明!

上一篇:Vue|非单文件组件(vuecli非根目录打包)

下一篇:【HTML】原生js实现的图书馆管理系统(javascript原生)

  • 税务ukey如何清卡
  • 加计扣除产生的滞纳金
  • 汽车运输企业付给车主的运费算成本吗
  • 更改开票信息需要多久
  • 煤炭运输企业的环保方案及措施怎么写
  • 计算并分摊本月利润
  • 不再认证时段内
  • 企业收到普通发票开错税率跨月重开后咋入账
  • 处置全资子公司税务处理
  • 应返还财政额度是什么科目
  • 应收未收的利息如何处理
  • 营业账簿印花税怎么算
  • 企业所得税按季预缴怎么算
  • 开物流公司能挣多少钱
  • 7月1日起税务新规
  • 如何理解“占应纳税额10%以上”?
  • 船舶维修价格表2017
  • 收到退以前年度教育费附加税
  • 重置申报清册是什么意思
  • 微信收款需要纳税多少
  • 企业所得税营业收入
  • 应交税费重分类分录
  • 收到退回去年增值税怎么做账
  • swimsuitnetwork.exe - swimsuitnetwork是什么进程 有何作用
  • 等值货币什么意思
  • 计提存货减值准备符合可靠性原则
  • 小规模纳税人结转免交增值税
  • Windows 11 CO-21H2 22000.194 正式版官方下载地址(附esd微软三语直链下载x64+arm64)
  • 分包工程账务处理
  • 百度地图 申请
  • 深度强化学习-DQN算法原理与代码
  • win11设置项改中文
  • php使用正则表达式检测是否包含非数字
  • laravel 实例
  • 其他综合收益转入盈余公积和未分配利润
  • 购买保健食品
  • java sc
  • python中exec执行如何获取返回值
  • 个人跑运输怎么开发票
  • 所有者权益是怎么排列的
  • 养老保险减免退税政策
  • 小规模防伪税控服务费多少钱
  • 固定资产报废如何进行账务处理
  • 银行支付结算管理办法
  • 法院拍卖得来的物品有发票吗
  • 代理赚差价违法吗
  • 有限公司结业清算
  • 小企业会计准则2023电子版
  • 短期理财收益账务分录
  • 投资的公司注销了怎么做账
  • 分公司内部管理模式
  • 有销项税额转出吗
  • 个税返还开票什么项目
  • sqlserver
  • 完美解决usb供电不足
  • sql server常见故障
  • 怎样用eclipse敲代码
  • 清空mysql数据库
  • Linux平台mysql开启远程登录
  • win1020h2累积更新
  • javaw.exe是什么进程
  • winxp系统设置密码
  • ubuntu系统如何
  • linux 命令
  • xp查看用户名和密码
  • win7系统播放器在哪
  • 如何关闭win8的windows defender
  • win10系统office2007每次打开都要配置
  • linux的命令行界面是什么意思
  • javascript之Array 数组对象详解
  • 关闭默认共享和共享文件夹
  • javascript类的继承
  • javaScript NameSpace 简单说明介绍
  • python的基本数值类型
  • 简单又实用的
  • android数据存储总结
  • 餐饮服务需要交印花税吗?
  • 2020年砂石
  • 国税发票什么意思
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设