位置: IT常识 - 正文

Diffusion-GAN: Training GANs with Diffusion 解读

编辑:rootadmin
Diffusion-GAN: Training GANs with Diffusion 解读

推荐整理分享Diffusion-GAN: Training GANs with Diffusion 解读,希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!

 Diffusion-GAN: 将GAN与diffusion一起训练 

paper:https://arxiv.org/abs/2206.02262

code:GitHub - Zhendong-Wang/Diffusion-GAN: Official PyTorch implementation for paper: Diffusion-GAN: Training GANs with Diffusion

  第一行从左向右看是diffusion forward的过程,不断由 real image 进行 diffusion,第三行从右向左看是由noise逐步恢复成fake image的过程,第二行是鉴别器D,D对每一个timestep都进行鉴别。 

 Figure 1: Flowchart for Diffusion-GAN. The top-row images represent the forward diffusion process of a real image, while the bottom-row images represent the forward diffusion process of a generated fake image. The discriminator learns to distinguish a diffused real image from a diffused fake image at all diffusion steps.

in Figure 1. In Diffusion-GAN, the input to the diffusion process is either a real or a generated image, and the diffusion process consists of a series of steps that gradually add noise to the  image. The number of diffusion steps is not fixed, but depends on the data and the generator. We also design the diffusion process to be differentiable, which means that we can compute the derivative of the output with respect to the input. This allows us to propagate the gradient from the discriminator to the generator through the diffusion process, and update the generator accordingly. Unlike vanilla GANs, which compare the real and generated images directly, Diffusion-GAN compares the noisy versions of them, which are obtained by sampling from the Gaussian mixture distribution over the diffusion steps, with the help of our timestep-dependent discriminator. This distribution has the property that its components have different noise-to-data ratios, which means that some components add more noise than others. By sampling from this distribution, we can achieve two benefits: first, we can stabilize the training by easing the problem of vanishing gradient, which occurs when the data and generator distributions are too different; second, we can augment the data by creating different noisy versions of the same image, which can improve the data efficiency and the diversity of the generator. We provide a theoretical analysis to support our method, and show that the min-max objective function of Diffusion-GAN, which measures the difference between the data and generator distributions, is continuous and differentiable everywhere. This means that the generator in theory can always receive a useful gradient from the discriminator, and improve its performance.【G可以从D收到有用的梯度,从而提升G的性能】

主要贡献:

1) We show both theoretically and empirically how the diffusion process can be utilized to provide a model- and domain-agnostic differentiable augmentation, enabling data-efficient and leaking-free stable GAN training.【稳定了GAN的训练】 2) Extensive experiments show that Diffusion-GAN boosts the stability and generation performance of strong baselines, including StyleGAN2 , Projected GAN , and InsGen , achieving state-of-the-art results in synthesizing photo-realistic images, as measured by both the Fréchet Inception Distance (FID)  and Recall score.【diffusion提升了原始只有GAN组成的框架的性能,例如styleGAN2,Projected GAN】

Diffusion-GAN: Training GANs with Diffusion 解读

Figure 2: The toy example inherited from Arjovsky et al. [2017]. The first row plots the distributions of data with diffusion noise injected for t. The second row shows the JS divergence and the optimal discriminator value with and without our noise injection. 

Figure 4: Plot of adaptively adjusted maximum diffusion steps T and discriminator outputs of Diffusion-GANs. 

To investigate how the adaptive diffusion process works during training, we illustrate in Figure 4 the convergence of the maximum timestep T in our adaptive diffusion and discriminator outputs. We see that T is adaptively adjusted: The T for Diffusion StyleGAN2 increases as the training goes while the T for Diffusion ProjectedGAN first goes up and then goes down. Note that the T is adjusted according to the overfitting status of the discriminator. The second panel shows that trained with the diffusion-based mixture distribution, the discriminator is always well-behaved and provides useful learning signals for the generator, which validates our analysis in Section 3.4 and Theorem 1.

如图4左所示,随着训练过程的变化,扩散的timestep T也会自适应的改变(T通过鉴别器D过拟合的状态而改变); 如图4右所示,用基于扩散的混合分布训练的鉴别器总是表现良好,并为生成器G提供有用的学习信号。

Effectiveness of Diffusion-GAN for domain-agnostic augmentation(未知域增强的有效性)

25-Gaussians Example.

We conduct experiments on the popular 25-Gaussians generation task. The 25-Gaussians dataset is a 2-D toy data, generated by a mixture of 25 two-dimensional Gaussian distributions. Each data point is a 2-dimensional feature vector. We train a small GAN model, whose generator and discriminator are both parameterized by multilayer perceptrons (MLPs), with two 128-unit hidden layers and LeakyReLu nonlinearities.

Figure 5: The 25-Gaussians example. We show the true data samples, the generated samples from vanilla GANs, the discriminator outputs of the vanilla GANs, the generated samples from our Diffusion-GAN, and the discriminator outputs of Diffusion-GAN. 

(1)groundtruth数据集的数据分布,在25个Gaussians example均匀分布; (2)vanilla GANs的输出结果产生了mode collapsing,只在几个model上生成数据; (3)vanilla GANs鉴别器输出很快就会彼此分离。这意味着发生了鉴别器的强烈过拟合,使得鉴别器停止为发生器提供有用的学习信号。 (4)Diffusion-GAN在25个example上均匀分布,意味着它在所有的model上学到了采样分布; (5)Diffusion-GAN的鉴别器输出,D在持续的为G提供有用的学习信号

我们从两个角度来解释这种改进: 首先,non-leaking augmentation(无泄漏增强)有助于提供关于数据空间的更多信息;第二,自适应调整的基于扩散的噪声注入,鉴别器表现良好。

关于 Difffferentiable augmentation. (可微分增强)

As Diffusion-GAN transforms both the data and generated samples before sending them to the discriminator, we can also relate it to differentiable augmentation proposed for data-efficient GAN training. Karras et al introduce a stochastic augmentation pipeline with 18 transformationsand develop an adaptive mechanism for controlling the augmentation probability. Zhao et al. [2020] propose to use Color + Translation + Cutout as differentiable augmentations for both generated and real images.

While providing good empirical results on some datasets, these augmentation methods are developed with domain-specific knowledge and have the risk of leaking augmentation  into generation [Karras et al., 2020a]. As observed in our experiments, they sometime worsen the results when applied to a new dataset, likely because the risk of augmentation leakage overpowers the benefits of enlarging the training set, which could happen especially if the training set size is already sufficiently large.(在数据量足够大的情况下,数据增强带来的负面效果可能大于正面效果)

By contrast, Diffusion-GAN uses a differentiable forward diffusion process to stochastically transform the data and can be considered as both a domain-agnostic and a model-agnostic augmentation method. In other words, Diffusion-GAN can be applied to non-image data or even latent features, for which appropriate data augmentation is difficult to be defined, and easily plugged into an existing GAN to improve its generation performance. Moreover, we prove in theory and show in experiments that augmentation leakage is not a concern for Diffusion-GAN. Tran et al. [2021] provide a theoretical analysis for deterministic non-leaking transformation with differentiable and invertible mapping functions. Bora et al. [2018] show similar theorems to us for specific stochastic transformations, such as Gaussian Projection, Convolve+Noise, and stochastic Block-Pixels, while our Theorem 2 includes more satisfying possibilities as discussed in Appendix B.

本文链接地址:https://www.jiuchutong.com/zhishi/294494.html 转载请保留说明!

上一篇:Vue|非单文件组件(vuecli非根目录打包)

下一篇:【HTML】原生js实现的图书馆管理系统(javascript原生)

  • 代付的费用收不收手续费
  • 入股资金打进公司帐户要交税吗
  • 生活记账技巧
  • 电信充值调账什么意思
  • 企业存货核算的内容包括
  • 房贷怎么申报抵押贷款
  • 建筑企业如何预缴税款
  • 平销返利如何开红字发票
  • 长期股权投资的交易费用计入哪里
  • 由于红字发票生成红字进项税转出如何做账?
  • 保安服务专票是多少税点
  • 待处置资产损溢在什么科目
  • 小规模纳税人开了3%的专票还能享受1%
  • 资产负债表期末余额怎么算
  • 印花税申报表如何填写
  • 福利费不需要发票记账吗
  • 企业发生的咨询费用
  • 高新企业产品开发的折旧费用可以税前扣除吗?
  • 未承兑的商业汇票什么意思
  • 专用发票不报销对公司有影响吗
  • 商会会费收取
  • 运输发票车种车号要求 自有车
  • 研发费收入属于什么收入
  • 普通支票如何转账
  • 存货跌价准备可以转回吗?
  • windows11结束任务快捷键
  • window10的帮助与支持窗口在哪
  • u盘文件全都变成快捷方式怎么办
  • 日历怎么不能添加事件了
  • 复制粘贴如何提取文字
  • 投标保证金退回的利息计入什么费用
  • 蓝牙有哪些功能
  • 甲方工程扣款如何处理
  • antd upload组件
  • Uncaught TypeError TypeError: Cannot set properties of null (setting ‘onclick‘)的解决办法
  • php throw
  • vue项目使用rem
  • 悉尼奥林匹克公园
  • 银行开户费用怎么做账
  • 递延收益和其他应付款的区别
  • 滴滴打车老板起源故事
  • ps如何使用套锁工具剪裁图片
  • 金融资产的会计科目
  • 中标费用入什么科目
  • 事业单位结余资金管理办法
  • 供应商退回货款怎么入账
  • 印花税的征税范围及税率
  • 停车费计税
  • Postgresql ALTER语句常用操作小结
  • 固定资产清理的金额怎么算
  • 小规模纳税人应交增值税明细科目
  • 公司支付宝账户提现需要手续费吗
  • 暂估入库后发票来不了会计分录
  • 提交印花税会计分录
  • 个人账户发工资扣税吗
  • 公司卖掉软件计提折旧吗
  • 公司注册代理费用标准
  • 会计信息质量特征哪个最重要
  • 采用账龄分析法计提坏账准备
  • sql server 2005如何使用
  • sql高级写法
  • windows终端美化
  • Linux中stat命令显示文件的基本使用教程
  • win7系统的分区类型怎么选
  • win10系统怎么安装qq
  • win8正版系统自带
  • win8怎么设置时间自动更新
  • win10raw预览
  • android opengl绘图
  • 一个简单的防偷技巧
  • 女鬼照片
  • js解析机制
  • unity如何成一组
  • jquery 触发点击
  • 云税票管家是什么软件
  • 税务人员少征税款
  • 代理记账公司账务处理
  • 2018年建筑业增值税税率变更文件
  • 为什么阿里会放弃dubbo?
  • 收购农民自产农产品可以使用现金
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设