位置: IT常识 - 正文

利用Python实现酒店评论的中文情感分析,含数据集(用python编写)

编辑:rootadmin
利用Python实现酒店评论的中文情感分析,含数据集 利用Python实现酒店评论的情感分析

推荐整理分享利用Python实现酒店评论的中文情感分析,含数据集(用python编写),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:用python编写,利用python进行,python运用,用python编写,python怎样用,利用python进行,利用python进行,怎么用python做,内容如对您有帮助,希望把文章链接给更多的朋友!

完整代码下载地址:利用Python实现酒店评论的中文情感分析

情感极性分析,即情感分类,对带有主观情感色彩的文本进行分析、归纳。情感极性分析主要有两种分类方法:基于情感知识的方法和基于机器学习的方法。基于情感知识的方法通过一些已有的情感词典计算文本的情感极性(正向或负向),其方法是统计文本中出现的正、负向情感词数目或情感词的情感值来判断文本情感类别;基于机器学习的方法利用机器学习算法训练已标注情感类别的训练数据集训练分类模型,再通过分类模型预测文本所属情感分类。本文采用机器学习方法实现对酒店评论数据的情感分类,利用Python语言实现情感分类模型的构建和预测,不包含理论部分,旨在通过实践一步步了解、实现中文情感极性分析。

1 开发环境准备1.1 Python环境

在python官网https://www.python.org/downloads/ 下载计算机对应的python版本,本人使用的是Python2.7.13的版本。

1.2 第三方模块

本实例代码的实现使用到了多个著名的第三方模块,主要模块如下所示:

1)Jieba 目前使用最为广泛的中文分词组件。下载地址:https://pypi.python.org/pypi/jieba/2)Gensim 用于主题模型、文档索引和大型语料相似度索引的python库,主要用于自然语言处理(NLP)和信息检索(IR)。下载地址:https://pypi.python.org/pypi/gensim 本实例中的维基中文语料处理和中文词向量模型构建需要用到该模块。3)Pandas 用于高效处理大型数据集、执行数据分析任务的python库,是基于Numpy的工具包。下载地址:https://pypi.python.org/pypi/pandas/0.20.14)Numpy 用于存储和处理大型矩阵的工具包。下载地址:https://pypi.python.org/pypi/numpy5)Scikit-learn 用于机器学习的python工具包,python模块引用名字为sklearn,安装前还需要Numpy和Scipy两个Python库。官网地址:http://scikit-learn.org/stable/6)Matplotlib Matplotlib是一个python的图形框架,用于绘制二维图形。下载地址:https://pypi.python.org/pypi/matplotlib7)Tensorflow Tensorflow是一个采用数据流图用于数值计算的开源软件库,用于人工智能领域。 官网地址:http://www.tensorfly.cn/ 下载地址:https://pypi.python.org/pypi/tensorflow/1.1.02 数据获取2.1 停用词词典

本文使用中科院计算所中文自然语言处理开放平台发布的中文停用词表,包含了1208个停用词。下载地址:http://www.hicode.cc/download/view-software-13784.html

2.2 正负向语料库

文本从http://www.datatang.com/data/11936 下载“有关中文情感挖掘的酒店评论语料”作为训练集与测试集,该语料包含了4种语料子集,本文选用正负各1000的平衡语料(ChnSentiCorp_htl_ba_2000)作为数据集进行分析。

3 数据预处理3.1 正负向语料预处理

下载并解压ChnSentiCorp_htl_ba_2000.rar文件,得到的文件夹中包含neg(负向语料)和pos(正向语料)两个文件夹,而文件夹中的每一篇评论为一个txt文档,为了方便之后的操作,需要把正向和负向评论分别规整到对应的一个txt文件中,即正向语料的集合文档(命名为2000_pos.txt)和负向语料的集合文档(命名为2000_neg.txt)。 具体Python实现代码如下所示:

运行完成后得到2000_pos.txt和2000_neg.txt两个文本文件,分别存放正向评论和负向评论,每篇评论为一行。文档部分截图如下所示:

3.2 中文文本分词

本文采用结巴分词分别对正向语料和负向语料进行分词处理。特别注意,在执行代码前需要把txt源文件手动转化成UTF-8格式,否则会报中文编码的错误。在进行分词前,需要对文本进行去除数字、字母和特殊符号的处理,使用python自带的string和re模块可以实现,其中string模块用于处理字符串操作,re模块用于正则表达式处理。 具体实现代码如下所示:

处理完成后,得到2000_pos_cut.txt和2000_neg_cut.txt两个txt文件,分别存放正负向语料分词后的结果。分词结果部分截图如下所示:

3.3 去停用词

分词完成后,即可读取停用词表中的停用词,对分词后的正负向语料进行匹配并去除停用词。去除停用词的步骤非常简单,主要有两个:

1)读取停用词表;2)遍历分词后的句子,将每个词丢到此表中进行匹配,若停用词表存在则替换为空。

具体实现代码如下所示:

利用Python实现酒店评论的中文情感分析,含数据集(用python编写)

根据代码所示,停用词表的获取使用到了python特有的广播形式,一句代码即可搞定:

stopkey = [w.strip() for w in codecs.open('data\stopWord.txt', 'r', encoding='utf-8').readlines()]

读取出的每一个停用词必须要经过去符号处理即w.strip(),因为读取出的停用词还包含有换行符和制表符,如果不处理则匹配不上。代码执行完成后,得到2000_neg_cut_stopword.txt和2000_pos_cut_stopword.txt两个txt文件。

由于去停用词的步骤是在句子分词后执行的,因此通常与分词操作在同一个代码段中进行,即在句子分词操作完成后直接调用去停用词的函数,并得到去停用词后的结果,再写入结果文件中。本文是为了便于步骤的理解将两者分开为两个代码文件执行,各位可根据自己的需求进行调整。

3.4 获取特征词向量

根据以上步骤得到了正负向语料的特征词文本,而模型的输入必须是数值型数据,因此需要将每条由词语组合而成的语句转化为一个数值型向量。常见的转化算法有Bag of Words(BOW)、TF-IDF、Word2Vec。本文采用Word2Vec词向量模型将语料转换为词向量。

由于特征词向量的抽取是基于已经训练好的词向量模型,而wiki中文语料是公认的大型中文语料,本文拟从wiki中文语料生成的词向量中抽取本文语料的特征词向量。Wiki中文语料的Word2vec模型训练在之前写过的一篇文章“利用Python实现wiki中文语料的word2vec模型构建” 中做了详尽的描述,在此不赘述。即本文从文章最后得到的wiki.zh.text.vector中抽取特征词向量作为模型的输入。

获取特征词向量的主要步骤如下:

1)读取模型词向量矩阵;2)遍历语句中的每个词,从模型词向量矩阵中抽取当前词的数值向量,一条语句即可得到一个二维矩阵,行数为词的个数,列数为模型设定的维度;3)根据得到的矩阵计算矩阵均值作为当前语句的特征词向量;4)全部语句计算完成后,拼接语句类别代表的值,写入csv文件中。

主要代码如下图所示:

代码执行完成后,得到一个名为2000_data.csv的文件,第一列为类别对应的数值(1-pos, 0-neg),第二列开始为数值向量,每一行代表一条评论。结果的部分截图如下所示:

3.5 降维

Word2vec模型设定了400的维度进行训练,得到的词向量为400维,本文采用PCA算法对结果进行降维。具体实现代码如下所示:

运行代码,根据结果图发现前100维就能够较好的包含原始数据的绝大部分内容,因此选定前100维作为模型的输入。

4 分类模型构建

本文采用支持向量机(SVM)作为本次实验的中文文本分类模型,其他分类模型采用相同的分析流程,在此不赘述。

支持向量机(SVM)是一种有监督的机器学习模型。本文首先采用经典的机器学习算法SVM作为分类器算法,通过计算测试集的预测精度和ROC曲线来验证分类器的有效性,一般来说ROC曲线的面积(AUC)越大模型的表现越好。

首先使用SVM作为分类器算法,随后利用matplotlib和metric库来构建ROC曲线。具体python代码如下所示:

运行代码,得到Test Accuracy: 0.88,即本次实验测试集的预测准确率为88%,ROC曲线如下图所示。

完整代码下载地址:利用Python实现酒店评论的中文情感分析

本文链接地址:https://www.jiuchutong.com/zhishi/295382.html 转载请保留说明!

上一篇:Segment Anything Model (SAM)——分割一切,具有预测提示输入的图像分割实践(segment anything model github)

下一篇:操作系统——死锁(操作系统())

  • 关注了那么多公众号,你注意过他们的文案吗?(关注太多的公众号有什么坏处)

    关注了那么多公众号,你注意过他们的文案吗?(关注太多的公众号有什么坏处)

  • 笔记本怎么进入bios界面(笔记本怎么进入bios)(笔记本怎么进入u盘启动)

    笔记本怎么进入bios界面(笔记本怎么进入bios)(笔记本怎么进入u盘启动)

  • 微信被拉黑打过去会是怎样的(微信被拉黑打过电话提示)

    微信被拉黑打过去会是怎样的(微信被拉黑打过电话提示)

  • 苹果6s输入法怎么设置(苹果6s输入法怎么换)

    苹果6s输入法怎么设置(苹果6s输入法怎么换)

  • 小米手机右上角出现耳机怎么消除(小米手机右上角出现电话叉怎么关闭)

    小米手机右上角出现耳机怎么消除(小米手机右上角出现电话叉怎么关闭)

  • 咪咕特级会员有什么用(咪咕特级会员要钱吗)

    咪咕特级会员有什么用(咪咕特级会员要钱吗)

  • 充电器插在插座上不拔会有危险吗(充电器插在插座上费电吗)

    充电器插在插座上不拔会有危险吗(充电器插在插座上费电吗)

  • 计算机操作系统的功能是(计算机操作系统慕课版课后答案汤小丹)

    计算机操作系统的功能是(计算机操作系统慕课版课后答案汤小丹)

  • ios11是苹果几(苹果ios11是什么意思)

    ios11是苹果几(苹果ios11是什么意思)

  • win7打开程序马上闪退(win7电脑打开应用程序很慢)

    win7打开程序马上闪退(win7电脑打开应用程序很慢)

  • qq号封永久能不能找回好友(qq号封永久能不能解封)

    qq号封永久能不能找回好友(qq号封永久能不能解封)

  • 微信接收信息反应慢是什么原因(微信接收信息反应慢怎么回事)

    微信接收信息反应慢是什么原因(微信接收信息反应慢怎么回事)

  • 火山怎么自己制作音乐(火山制作方法)

    火山怎么自己制作音乐(火山制作方法)

  • 手机怎么复制文件(手机怎么复制文件到另一个文件夹)

    手机怎么复制文件(手机怎么复制文件到另一个文件夹)

  • ipad文件储存在哪里(ipad文件储存在我的ipad里还是云盘里好)

    ipad文件储存在哪里(ipad文件储存在我的ipad里还是云盘里好)

  • 系统框图组成要素(系统的框图包括)

    系统框图组成要素(系统的框图包括)

  • 计算机一级excel函数(计算机一级excel操作题视频讲解)

    计算机一级excel函数(计算机一级excel操作题视频讲解)

  • 小米cc9如何截图(小米cc9怎么截长图)

    小米cc9如何截图(小米cc9怎么截长图)

  • xr突然黑屏开不了机(苹果xr突然黑屏没反应)

    xr突然黑屏开不了机(苹果xr突然黑屏没反应)

  • 华为p30录音在哪里(华为p30录音在哪里关闭)

    华为p30录音在哪里(华为p30录音在哪里关闭)

  • 抖音怎么退工会(抖音怎么退工会120天)

    抖音怎么退工会(抖音怎么退工会120天)

  • VUE3传值相关六种方法(vue传值inject)

    VUE3传值相关六种方法(vue传值inject)

  • 改进YOLO:YOLOv5结合swin transformer(改进的拼音)

    改进YOLO:YOLOv5结合swin transformer(改进的拼音)

  • 我国流转税的税种有哪些
  • 小规模纳税人企业购进货物和接受应税劳务时
  • 固定资产分期付款会计处理
  • 税务局多扣的一笔钱
  • 含税金额怎么算税额公式
  • 提取资本公积会计凭证
  • 打折销售商品会计分录
  • 现金管理规定有哪些主要内容
  • 摊销土地使用权和专利权会计分录怎么写
  • 企业在建工程如何做账
  • 机构账户炒股是卖出后缴税么
  • 预缴增值税一般计税依据
  • 营改增以前建筑税率
  • 国税退税需要多长时间
  • 税控设备指什么
  • 没有车船税证明可以年检吗
  • 资本公积金转增资本属于所有者权益吗
  • 公司购买投影仪的必要性?
  • 发票认证平台登陆不了,IE不成功
  • 可以在企业所得税税前扣除的税金有
  • 消费税在哪个环节征税
  • 转让无形资产税目征收营业税的是
  • 工程用的叉车计提折旧记到什么科目?
  • 其他权益工具投资交易费用计入哪里
  • 反避税的意义
  • 购买保本理财产品
  • win11如何退回win10超过10天
  • 财务软件的摊销额计入管理费用
  • 收到人才引进已受理的短信
  • 苹果15手机价格和图片颜色
  • 固定资产更新改造支出资本化
  • 以太网默认网关怎么查看
  • 高新技术产业研究院有限公司
  • npm命令不存在
  • 五彩鲍鱼的做法
  • 应收债权与应付债务
  • 违约金赔偿款怎么开票
  • phpcms怎么样
  • 使用van-picker 动态设置当前选中项
  • 个体户查账征收个人所得税税率
  • 购入固定资产的预算会计账务处理
  • 将表里的数据批量删除
  • Python中input输入多行文本
  • 钢材贸易公司如何经营
  • SqlServer中用exec处理sql字符串中含有变量的小例子
  • 税法对工资薪金的要求
  • 税金及附加与应交税金的关系
  • 计提成本后如何冲回
  • 最新成品油消费政策
  • 内部往来科目设置在哪类下
  • 政府扶助资金
  • 企业自建房屋建设方案
  • 以前年度应交税费多计提怎么调平
  • 销售费属于期间费用
  • 审计备案表
  • 销售方开具的红字专票怎么入账
  • 招标付款条件及比例
  • window小技巧
  • win7系统硬盘安装版
  • tomcat调用servlet流程
  • windows关机电源不断电
  • linux命令怎么用
  • 微软发布更新的时间每月
  • opengl 投影矩阵
  • 项目部不足和改进
  • 什么叫真游戏
  • 深入了解工作优势怎么回答
  • js制作网站
  • 搭建maven开发环境
  • javascript中this的用法
  • js类的定义方法
  • python中的文件
  • 重庆电子税务局网页版登录
  • 广东税务查询系统
  • 税务师事务所行政登记表怎么办理
  • 设计服务税收分类编码
  • 成都高新区税务局办税服务厅电话
  • 小规模纳税人一年开票额度是多少
  • 辽宁网上税务
  • 应缴增值税
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设