位置: IT常识 - 正文

YOLOV5更换轻量级的backbone:mobilenetV2(yolov5使用)

编辑:rootadmin
YOLOV5更换轻量级的backbone:mobilenetV2

目录

简洁概要:

修改主干网络:

一:添加自己主干网络

二:在yolo.py中添加common中的两个函数

三:制作mobilenetv2的yaml配置文件

四:制作数据集VOC的yaml配置文件

五:启用训练

六:性能检测

推荐整理分享YOLOV5更换轻量级的backbone:mobilenetV2(yolov5使用),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:yolov5 5.0,yolov5轻量化,yolov5商用,yolov5轻量化,yolov5轻量化,yolov5轻量化,yolov5更换backbone,yolov5轻量化,内容如对您有帮助,希望把文章链接给更多的朋友!

简洁概要:

MobileNetV2主要采用了深度可分离卷积,在MobileNetv1的基础上引用了残差模块以及Relu6的激活函数,用1*n,n*1的思想代替了n*n的矩阵,计算量会更小。

修改主干网络:一:添加自己主干网络

yolov5 6.1的版本中,在models/common中添加MobilenetV2作为backbone

class ConvBNReLU(nn.Sequential): # 该函数主要做卷积 池化 ReLU6激活操作 def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): padding = (kernel_size - 1) // 2 # 池化 = (步长-1)整除2 super(ConvBNReLU, self).__init__( # 调用ConvBNReLU父类添加模块 nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, bias=False, groups=groups), # bias默认为False nn.BatchNorm2d(out_planes), nn.ReLU6(inplace=True))class InvertedResidual(nn.Module): # 该模块主要实现了倒残差模块 def __init__(self, inp, oup, stride, expand_ratio): # inp 输入 oup 输出 stride步长 exoand_ratio 按比例扩张 super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] hidden_dim = int(round(inp * expand_ratio)) # 由于有到残差模块有1*1,3*3的卷积模块,所以可以靠expand_rarton来进行升维 self.use_res_connect = self.stride == 1 and inp == oup # 残差连接的判断条件:当步长=1且输入矩阵与输出矩阵的shape相同时进行 layers = [] if expand_ratio != 1: # 如果expand_ratio不等于1,要做升维操作,对应图中的绿色模块 # pw layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) # 这里添加的是1*1的卷积操作 layers.extend([ # dw ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), # 这里做3*3的卷积操作,步长可能是1也可能是2,groups=hidden_dim表示这里使用了分组卷积的操作,对应图上的蓝色模块 # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), # 对应图中的黄色模块 nn.BatchNorm2d(oup), ]) self.conv = nn.Sequential(*layers) # 将layers列表中的元素解开依次传入nn.Sequential def forward(self, x): if self.use_res_connect: # 如果使用了残差连接,就会进行一个x+的操作 return x + self.conv(x) else: return self.conv(x) # 否则不做操作二:在yolo.py中添加common中的两个函数if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, ConvBNReLU, InvertedResidual): # 添加 common中新加的两个模块 ConvBNReLU和InvertedResidual三:制作mobilenetv2的yaml配置文件# Parametersnc: 1 # number of classesdepth_multiple: 1.0 # model depth multiplewidth_multiple: 1.0 # layer channel multipleanchors: - [ 10,13, 16,30, 33,23 ] # P3/8 - [ 30,61, 62,45, 59,119 ] # P4/16 - [ 116,90, 156,198, 373,326 ] # P5/32# YOLOv5 v6.0 backbonebackbone: # [from, number, module, args] [ [ -1, 1, Conv, [ 32, 3, 2 ] ], # 0-P1/2 32x320x320 [ -1, 1, InvertedResidual, [ 16, 1, 1 ] ], # 1 16x320x320 [ -1, 1, InvertedResidual, [ 24, 2, 6 ] ], # 2-P2/4 24x160x160 [ -1, 1, InvertedResidual, [ 24, 1, 6 ] ], # 3-P2/4 24x160x160 [ -1, 1, InvertedResidual, [ 32, 2, 6 ] ], # 4-P3/8 32x80x80 [ -1, 1, InvertedResidual, [ 32, 1, 6 ] ], # 5-P3/8 32x80x80 [ -1, 1, InvertedResidual, [ 32, 1, 6 ] ], # 6-P3/8 32x80x80 [ -1, 1, InvertedResidual, [ 64, 2, 6 ] ], # 7-P4/16 64x40x40 [ -1, 1, InvertedResidual, [ 64, 1, 6 ] ], # 8-P4/16 64x40x40 [ -1, 1, InvertedResidual, [ 64, 1, 6 ] ], # 9-P4/16 64x40x40 [ -1, 1, InvertedResidual, [ 64, 1, 6 ] ], # 10-P4/16 64x40x40 [ -1, 1, InvertedResidual, [ 96, 1, 6 ] ], # 11 96X40X40 [ -1, 1, InvertedResidual, [ 96, 1, 6 ] ], # 12 96X40X40 [ -1, 1, InvertedResidual, [ 96, 1, 6 ] ], # 13 96X40X40 [ -1, 1, InvertedResidual, [ 160, 2, 6 ] ], # 14-P5/32 160X20X20 [ -1, 1, InvertedResidual, [ 160, 1, 6 ] ], # 15-P5/32 160X20X20 [ -1, 1, InvertedResidual, [ 160, 1, 6 ] ], # 16-P5/32 160X20X20 [ -1, 1, InvertedResidual, [ 320, 1, 6 ] ], # 17 320X20X20 ]# YOLOv5 v6.0 headhead: [ [ -1, 1, Conv, [ 160, 1, 1 ] ], [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], [ [ -1, 13 ], 1, Concat, [ 1 ] ], # cat backbone P4 [ -1, 1, C3, [ 160, False ] ], # 21 [ -1, 1, Conv, [ 80, 1, 1 ] ], [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P3 [ -1, 1, C3, [ 80, False ] ], # 25 (P3/8-small) [ -1, 1, Conv, [ 80, 3, 2 ] ], [ [ -1, 22 ], 1, Concat, [ 1 ] ], # cat head P4 [ -1, 1, C3, [ 160, False ] ], # 28 (P4/16-medium) [ -1, 1, Conv, [ 160, 3, 2 ] ], [ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P5 [ -1, 1, C3, [ 320, False ] ], # 31 (P5/32-large) [ [ 25, 28, 31 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5) ]四:制作数据集VOC的yaml配置文件# YOLOv5 by Ultralytics, GPL-3.0 license# PASCAL VOC dataset ' # old img path lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path f.rename(imgs_path / f.name) # move image convert_label(path, lb_path, year, id) # convert labels to YOLO format五:启用训练

由于修改了网络所以不能加载预训练模型进行

预训练模型的作用:加快模型训练初期的超参数训练时间

YOLOV5更换轻量级的backbone:mobilenetV2(yolov5使用)

weights修改为空

cfg修改为自己网络模型的配置文件

data修改为自己VOC数据集的配置文件

六:性能检测

修改val.py的参数,与上一步一致

这里分别用了V5s,V5n,以及mobilenetV2分别做了150批次训练来对比

mobilenetV2

 V5s

 V5n

对比可以发现 V5n与mobilenetV2的相差并不大,相比较于这两个模型,V5s的精度稍微高一些,但是它模型的复杂度会略微大一丢丢,推理时间略大一点。

本文链接地址:https://www.jiuchutong.com/zhishi/295870.html 转载请保留说明!

上一篇:X-Frame-Options简介(next frame)

下一篇:html表白代码(html表白代码动态)

  • 政府补助利得要交企业所得税吗怎么算
  • 金融企业往来支出属于什么科目
  • 微信收款和支付宝收款有啥区别
  • 上市公司收购其他公司要多久
  • 软件企业购进软件服务怎么入账
  • 计算土地增值税时增值税可以扣除吗
  • 商业承兑汇票有风险吗
  • 银行承兑汇票怎么取钱
  • 营业成本利润率是指
  • 收到合同款
  • 合资公司51%股东的权限
  • 公司支付倒垃圾费怎么做会计分录
  • 股票发行的会计分录
  • 开票方与受票方的区别
  • 增值税专用发票验证真伪
  • 矿泉水售卖方式
  • 增值税普票需要进项吗
  • 高新企业研发投入后产出增加
  • 建筑行业印花税税率
  • 营改增后不动产进项税额抵扣
  • 收回长期股权投资账务处理成本法
  • 工程储备的材料是存货吗
  • 金税盘月末做哪些事情
  • 营业收入与主营业务收入的区别与联系
  • 公司之间过户车辆要交税吗
  • 定期存款利息收入怎么算
  • 经营性资产和非经济资产
  • 企业所得税汇算清缴表
  • 临时文件夹无写入权限这是什么原因
  • system进程有什么用
  • php字符串定义的三种方式
  • php输出姓名
  • php判断查询是否有结果
  • 办理房屋租赁需要的材料
  • 金融工具减值的范围包括哪些?
  • 所得税 季报
  • 输入什么验证
  • 发生的计提费用没有发生怎么办
  • 权责发生制下确认的未开票收入是否缴纳增值税
  • 神经网络模型是干嘛的
  • 深度学习知识点简单概述【更新中】
  • zabbix 执行命令
  • 用python绘制
  • 应交增值税为负数怎么处理
  • 跨年度多计提的附加税怎么做分录
  • 注册一个公司没有流水可以吗
  • js在数组中查找指定元素
  • 建筑企业营改增之前计税方法
  • 律师跨省办案收取的费用叫什么
  • 如何免费用别人家的wifi
  • 暂估管理费用跨年账务处理
  • 合同履约成本与一份当前或预期取得的区别
  • 应收代位追偿款有没有明细科目
  • 买到库存货 退货
  • 进口消费品增值税计税依据
  • 企业办理名称变更怎么办
  • 销项负数发票开了需要给对方重开发票吗?
  • 应付账款和应付票据的区别与联系
  • sql server怎么执行
  • mysql函数返回值类型
  • MySQL数据迁移到oracle
  • linux系统rm -rf
  • linux清屏幕命令
  • win7系统关机很慢什么原因
  • whSurvey.exe - whSurvey进程是什么意思
  • windows10计划任务文件在哪
  • windows xp
  • win8怎么清空电脑只剩系统
  • myfastupdate.exe - myfastupdate是什么进程文件 有什么用
  • 如何将文件夹建立成快捷方式
  • vtk下载步骤
  • 实用的批处理命令
  • unity3d,C#使用sqlite作为数据库解决方案思路
  • 单页图片和文字怎么设置
  • vue微信分享功能
  • jquery中如何获取元素?
  • ListView中EditText焦点问题
  • ready jquery
  • javascript基本语句
  • 江西社保申报时间
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设