位置: IT常识 - 正文

【Pytorch深度学习实战】(11)变分自动编码器(VAE)

编辑:rootadmin
【Pytorch深度学习实战】(11)变分自动编码器(VAE)

推荐整理分享【Pytorch深度学习实战】(11)变分自动编码器(VAE),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!

 🔎大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎

📝个人主页-Sonhhxg_柒的博客_CSDN博客 📃

🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​

📣系列专栏 - 机器学习【ML】 自然语言处理【NLP】  深度学习【DL】

 🖍foreword

✔说明⇢本人讲解主要包括Python、机器学习(ML)、深度学习(DL)、自然语言处理(NLP)等内容。

如果你对这个系列感兴趣的话,可以关注订阅哟👋

Variational AutoEncoder(VAE)原理

传统的自编码器模型主要由两部分构成:编码器(encoder)和解码器(decoder)。如下图所示:

在上面的模型中,经过反复训练,我们的输入数据X最终被转化为一个编码向量X’, 其中X’的每个维度表示一些学到的关于数据的特征,而X’在每个维度上的取值代表X在该特征上的表现。随后,解码器网络接收X’的这些值并尝试重构原始输入。

举一个例子来加深大家对自编码器的理解:

【Pytorch深度学习实战】(11)变分自动编码器(VAE)

假设任何人像图片都可以由表情、肤色、性别、发型等几个特征的取值来唯一确定,那么我们将一张人像图片输入自动编码器后将会得到这张图片在表情、肤色等特征上的取值的向量X’,而后解码器将会根据这些特征的取值重构出原始输入的这张人像图片。

在上面的示例中,我们使用单个值来描述输入图像在潜在特征上的表现。但在实际情况中,我们可能更多时候倾向于将每个潜在特征表示为可能值的范围。例如,如果输入蒙娜丽莎的照片,将微笑特征设定为特定的单值(相当于断定蒙娜丽莎笑了或者没笑)显然不如将微笑特征设定为某个取值范围(例如将微笑特征设定为x到y范围内的某个数,这个范围内既有数值可以表示蒙娜丽莎笑了又有数值可以表示蒙娜丽莎没笑)更合适。而变分自编码器便是用“取值的概率分布”代替原先的单值来描述对特征的观察的模型,如下图的右边部分所示,经过变分自编码器的编码,每张图片的微笑特征不再是自编码器中的单值而是一个概率分布。

通过这种方法,我们现在将给定输入的每个潜在特征表示为概率分布。当从潜在状态解码时,我们将从每个潜在状态分布中随机采样,生成一个向量作为解码器模型的输入。

通过上述的编解码过程,我们实质上实施了连续,平滑的潜在空间表示。对于潜在分布的所有采样,我们期望我们的解码器模型能够准确重构输入。因此,在潜在空间中彼此相邻的值应该与非常类似的重构相对应。

以上便是变分自编码器构造所依据的原理,我们再来看一看它的具体结构。

如上图所示,与自动编码器由编码器与解码器两部分构成相似,VAE利用两个神经网络建立两个概率密度分布模型:一个用于原始输入数据的变分推断,生成隐变量的变分概率分布,称为推断网络;另一个根据生成的隐变量变分概率分布,还原生成原始数据的近似概率分布,称为生成网络。

假设原始数据集为

,每个数据样本 xi 都是随机产生的相互独立、连续或离散的分布变量,生成数据集合为

,并且假设该过程产生隐变量Z ,即Z是决定X属性的神秘原因(特征)。其中可观测变量X 是一个高维空间的随机向量,不可观测变量 Z 是一个相对低维空间的随机向量,该生成模型可以分成两个过程:

(1)隐变量 Z 后验分布的近似推断过程:

,即推断网络。

(2)生成变量X' 的条件分布生成过程:

,即生成网络。

尽管VAE 整体结构与自编码器AE 结构类似,但VAE 的作用原理和AE 的作用原理完全不同,VAE 的“编码器”和“解码器” 的输出都是受参数约束变量的概率密度分布,而不是某种特定的编码。

变分自编码器Pytorch的实现import osimport torchimport torch.nn as nnimport torch.nn.functional as Fimport torchvisionfrom torchvision import transformsfrom torchvision.utils import save_image# 设备配置device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')# 如果不存在则创建目录sample_dir = 'samples'if not os.path.exists(sample_dir): os.makedirs(sample_dir)# 超参数image_size = 784h_dim = 400z_dim = 20num_epochs = 15batch_size = 128learning_rate = 1e-3# MNIST 数据集dataset = torchvision.datasets.MNIST(root='../../data', train=True, transform=transforms.ToTensor(), download=True)# 数据加载器data_loader = torch.utils.data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True)# VAE模型class VAE(nn.Module): def __init__(self, image_size=784, h_dim=400, z_dim=20): super(VAE, self).__init__() self.fc1 = nn.Linear(image_size, h_dim) self.fc2 = nn.Linear(h_dim, z_dim) self.fc3 = nn.Linear(h_dim, z_dim) self.fc4 = nn.Linear(z_dim, h_dim) self.fc5 = nn.Linear(h_dim, image_size) def encode(self, x): h = F.relu(self.fc1(x)) return self.fc2(h), self.fc3(h) def reparameterize(self, mu, log_var): std = torch.exp(log_var/2) eps = torch.randn_like(std) return mu + eps * std def decode(self, z): h = F.relu(self.fc4(z)) return F.sigmoid(self.fc5(h)) def forward(self, x): mu, log_var = self.encode(x) z = self.reparameterize(mu, log_var) x_reconst = self.decode(z) return x_reconst, mu, log_varmodel = VAE().to(device)optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)# 开始训练for epoch in range(num_epochs): for i, (x, _) in enumerate(data_loader): # 前传 x = x.to(device).view(-1, image_size) x_reconst, mu, log_var = model(x) # 计算重建损失和kl散度 reconst_loss = F.binary_cross_entropy(x_reconst, x, size_average=False) kl_div = - 0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp()) # 反向传播和优化 loss = reconst_loss + kl_div optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 10 == 0: print ("Epoch[{}/{}], Step [{}/{}], Reconst Loss: {:.4f}, KL Div: {:.4f}" .format(epoch+1, num_epochs, i+1, len(data_loader), reconst_loss.item(), kl_div.item())) with torch.no_grad(): # 保存采样图像 z = torch.randn(batch_size, z_dim).to(device) out = model.decode(z).view(-1, 1, 28, 28) save_image(out, os.path.join(sample_dir, 'sampled-{}.png'.format(epoch+1))) # 保存重建的图像 out, _, _ = model(x) x_concat = torch.cat([x.view(-1, 1, 28, 28), out.view(-1, 1, 28, 28)], dim=3) save_image(x_concat, os.path.join(sample_dir, 'reconst-{}.png'.format(epoch+1)))
本文链接地址:https://www.jiuchutong.com/zhishi/297306.html 转载请保留说明!

上一篇:vue-nginx刷新404问题

下一篇:前端vscode必备插件推荐(墙裂推荐)(vscode写前端代码,如何运行)

  • 企业自建房屋
  • 冲减计提
  • 小规模减免税款的账务处理
  • 公账的钱取现金
  • 个税年度汇算清缴截止时间
  • 差额征收企业指什么企业
  • 公司提供住宿员工在外居住出现问题
  • 销项负数发票是代表交易没有成功吗?
  • 珠宝属于什么行业领域
  • 企业缴纳的财产保险费会计分录
  • 购买债券取得的利息收入计入什么科目
  • 增值税的附加
  • 换汇成本跟进项有关系吗
  • 个税手续费返还计入哪个科目
  • 联营与参股公司的关系
  • 中途做账的企业如何建账
  • 其他应收款预算会计需要做账吗
  • 财产转让所得个人所得税纳税地点
  • 期初存货余额在哪张表里
  • 增值税小规模纳税人免征增值税政策
  • 合伙人退伙资产清算需要交税吗
  • 住房公积金相关文件
  • 股息红利纳税义务发生地
  • 在标题栏显示完整页面
  • 房产的评估增值属于土地增值税征税范围对吗
  • 已经计提工资后怎么做账
  • 预缴附加税款会退税吗
  • 政府搬迁补偿款不够建房怎么办
  • 做事应该怎么做
  • php开启pdo
  • php远程命令执行
  • laravel 分层
  • PHP:imageloadfont()的用法_GD库图像处理函数
  • 哪些情况即使取消核酸
  • web后端开发框架有哪些
  • jasperreports入门
  • 激光器原理及应用
  • vue中的$el
  • 传承古老文化
  • 哪些农产品属于免税
  • 展览费应在在管理费里吗
  • 销售边角料的会计分录
  • 报废车怎么上路
  • 金蝶软件资产负债表怎么生成
  • 实际发生费用的概念
  • 交通费怎么报销
  • 发票收到款项未付做什么凭证编制
  • 计提贷款准备金公式
  • 房地产企业购买礼品赠送客户
  • 固定资产减少如何处理
  • 所得税季报中的营业收入包括营业外收入吗
  • 房地产项目完工清算报告
  • 债务抵销的条件
  • 税务监制章验证无效
  • 用友为什么引入不了账套
  • 在什么情况下会冻结微信零钱
  • 新公司开户有几种类型
  • mysql in如何优化
  • sql 行号
  • 怎么在windows
  • win8.1怎么用
  • win10更换登陆账号
  • linux 硬盘满了
  • win8系统谷歌浏览器打不开
  • win7显示ipv6无网络访问权限
  • win8如何安装
  • python如何不换行
  • 原生js制作日历软件
  • 如何使用nodejs
  • 批量创建用户
  • firefox background-image垂直平铺问题的解决方法
  • 获取jquery对象
  • unity3d界面
  • 日历查询的算法怎么写
  • node.js django
  • nodejs function
  • python中django
  • 发票金额模糊怎么查询
  • 蚊香税率是多少
  • 广东省深圳市地图最新版
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设