位置: IT常识 - 正文

【Pytorch深度学习实战】(11)变分自动编码器(VAE)

编辑:rootadmin
【Pytorch深度学习实战】(11)变分自动编码器(VAE)

推荐整理分享【Pytorch深度学习实战】(11)变分自动编码器(VAE),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!

 🔎大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎

📝个人主页-Sonhhxg_柒的博客_CSDN博客 📃

🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​

📣系列专栏 - 机器学习【ML】 自然语言处理【NLP】  深度学习【DL】

 🖍foreword

✔说明⇢本人讲解主要包括Python、机器学习(ML)、深度学习(DL)、自然语言处理(NLP)等内容。

如果你对这个系列感兴趣的话,可以关注订阅哟👋

Variational AutoEncoder(VAE)原理

传统的自编码器模型主要由两部分构成:编码器(encoder)和解码器(decoder)。如下图所示:

在上面的模型中,经过反复训练,我们的输入数据X最终被转化为一个编码向量X’, 其中X’的每个维度表示一些学到的关于数据的特征,而X’在每个维度上的取值代表X在该特征上的表现。随后,解码器网络接收X’的这些值并尝试重构原始输入。

举一个例子来加深大家对自编码器的理解:

【Pytorch深度学习实战】(11)变分自动编码器(VAE)

假设任何人像图片都可以由表情、肤色、性别、发型等几个特征的取值来唯一确定,那么我们将一张人像图片输入自动编码器后将会得到这张图片在表情、肤色等特征上的取值的向量X’,而后解码器将会根据这些特征的取值重构出原始输入的这张人像图片。

在上面的示例中,我们使用单个值来描述输入图像在潜在特征上的表现。但在实际情况中,我们可能更多时候倾向于将每个潜在特征表示为可能值的范围。例如,如果输入蒙娜丽莎的照片,将微笑特征设定为特定的单值(相当于断定蒙娜丽莎笑了或者没笑)显然不如将微笑特征设定为某个取值范围(例如将微笑特征设定为x到y范围内的某个数,这个范围内既有数值可以表示蒙娜丽莎笑了又有数值可以表示蒙娜丽莎没笑)更合适。而变分自编码器便是用“取值的概率分布”代替原先的单值来描述对特征的观察的模型,如下图的右边部分所示,经过变分自编码器的编码,每张图片的微笑特征不再是自编码器中的单值而是一个概率分布。

通过这种方法,我们现在将给定输入的每个潜在特征表示为概率分布。当从潜在状态解码时,我们将从每个潜在状态分布中随机采样,生成一个向量作为解码器模型的输入。

通过上述的编解码过程,我们实质上实施了连续,平滑的潜在空间表示。对于潜在分布的所有采样,我们期望我们的解码器模型能够准确重构输入。因此,在潜在空间中彼此相邻的值应该与非常类似的重构相对应。

以上便是变分自编码器构造所依据的原理,我们再来看一看它的具体结构。

如上图所示,与自动编码器由编码器与解码器两部分构成相似,VAE利用两个神经网络建立两个概率密度分布模型:一个用于原始输入数据的变分推断,生成隐变量的变分概率分布,称为推断网络;另一个根据生成的隐变量变分概率分布,还原生成原始数据的近似概率分布,称为生成网络。

假设原始数据集为

,每个数据样本 xi 都是随机产生的相互独立、连续或离散的分布变量,生成数据集合为

,并且假设该过程产生隐变量Z ,即Z是决定X属性的神秘原因(特征)。其中可观测变量X 是一个高维空间的随机向量,不可观测变量 Z 是一个相对低维空间的随机向量,该生成模型可以分成两个过程:

(1)隐变量 Z 后验分布的近似推断过程:

,即推断网络。

(2)生成变量X' 的条件分布生成过程:

,即生成网络。

尽管VAE 整体结构与自编码器AE 结构类似,但VAE 的作用原理和AE 的作用原理完全不同,VAE 的“编码器”和“解码器” 的输出都是受参数约束变量的概率密度分布,而不是某种特定的编码。

变分自编码器Pytorch的实现import osimport torchimport torch.nn as nnimport torch.nn.functional as Fimport torchvisionfrom torchvision import transformsfrom torchvision.utils import save_image# 设备配置device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')# 如果不存在则创建目录sample_dir = 'samples'if not os.path.exists(sample_dir): os.makedirs(sample_dir)# 超参数image_size = 784h_dim = 400z_dim = 20num_epochs = 15batch_size = 128learning_rate = 1e-3# MNIST 数据集dataset = torchvision.datasets.MNIST(root='../../data', train=True, transform=transforms.ToTensor(), download=True)# 数据加载器data_loader = torch.utils.data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True)# VAE模型class VAE(nn.Module): def __init__(self, image_size=784, h_dim=400, z_dim=20): super(VAE, self).__init__() self.fc1 = nn.Linear(image_size, h_dim) self.fc2 = nn.Linear(h_dim, z_dim) self.fc3 = nn.Linear(h_dim, z_dim) self.fc4 = nn.Linear(z_dim, h_dim) self.fc5 = nn.Linear(h_dim, image_size) def encode(self, x): h = F.relu(self.fc1(x)) return self.fc2(h), self.fc3(h) def reparameterize(self, mu, log_var): std = torch.exp(log_var/2) eps = torch.randn_like(std) return mu + eps * std def decode(self, z): h = F.relu(self.fc4(z)) return F.sigmoid(self.fc5(h)) def forward(self, x): mu, log_var = self.encode(x) z = self.reparameterize(mu, log_var) x_reconst = self.decode(z) return x_reconst, mu, log_varmodel = VAE().to(device)optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)# 开始训练for epoch in range(num_epochs): for i, (x, _) in enumerate(data_loader): # 前传 x = x.to(device).view(-1, image_size) x_reconst, mu, log_var = model(x) # 计算重建损失和kl散度 reconst_loss = F.binary_cross_entropy(x_reconst, x, size_average=False) kl_div = - 0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp()) # 反向传播和优化 loss = reconst_loss + kl_div optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 10 == 0: print ("Epoch[{}/{}], Step [{}/{}], Reconst Loss: {:.4f}, KL Div: {:.4f}" .format(epoch+1, num_epochs, i+1, len(data_loader), reconst_loss.item(), kl_div.item())) with torch.no_grad(): # 保存采样图像 z = torch.randn(batch_size, z_dim).to(device) out = model.decode(z).view(-1, 1, 28, 28) save_image(out, os.path.join(sample_dir, 'sampled-{}.png'.format(epoch+1))) # 保存重建的图像 out, _, _ = model(x) x_concat = torch.cat([x.view(-1, 1, 28, 28), out.view(-1, 1, 28, 28)], dim=3) save_image(x_concat, os.path.join(sample_dir, 'reconst-{}.png'.format(epoch+1)))
本文链接地址:https://www.jiuchutong.com/zhishi/297306.html 转载请保留说明!

上一篇:vue-nginx刷新404问题

下一篇:前端vscode必备插件推荐(墙裂推荐)(vscode写前端代码,如何运行)

  • 年报纳税总额能查到吗
  • 结转结余属于什么科目
  • 完税证明能作为理赔依据吗
  • 销售购物取得的收入
  • 经营利润和营业利润的区别
  • 长期借款利息计入应付利息吗
  • 半成品算原材料吗
  • 延期申报预缴税款比例
  • 企业生产设备产品有哪些
  • 销售货物并运输增值税
  • 老会计有多厉害
  • 查账征收的个体户需要申报个人所得税吗
  • 公益性捐赠公告
  • 企业所得税可以弥补几年亏损
  • 公司委托公司收款合法吗
  • 企业微信收入也要交税吗
  • 旅行社差额征税如何开票
  • 非营利组织属于企业吗
  • 费用报销单应怎样填写
  • 贴现利息会计处理
  • 施工企业自建自用的工程
  • 阿佩勒斯
  • vrvarp.exe是什么
  • ros call
  • php和mysql的联合使用
  • 长期股权投资追加投资
  • 营业店面装修费怎么入账
  • 不跳槽怎么形容
  • 手把手教你安装nvidia驱动
  • 用ipconfig/all命令不能显示
  • unetbootin怎么删除
  • 对企业采取以旧换新方式销售的应税产品
  • 一般纳税人购进免税农产品如何抵扣进项税额
  • 现金流量表第四个期初现金余额怎么填
  • 公司名下的车怎么交税
  • 织梦怎么用
  • mysql查看创建表代码
  • mysql性能提升
  • 购固定资产怎么入账
  • 第一季度利润表年初余额
  • 非货币性资产交换和债务重组的区别
  • 企业间借款利息收入
  • 工会会计固定基金
  • 支付宝提现到对公账户要收手续费吗
  • 以公允价值计量计入其他综合收益
  • 公司一年发两次奖金
  • 新准则公允价值变动科目余额为负数
  • 上年记错账了,本年如何调整
  • 房屋租赁合同税率多少
  • 《实施条例》第二十七条
  • 机票 进项抵扣
  • 企业组织结构的本质是
  • 留抵税额可以抵欠税吗
  • sqlserver查询数据库数据量
  • 计算机上没有运行windows无线服务
  • solaris newfs
  • windows10pc游戏无法全屏
  • 家庭版的海鲜大杂烩
  • windows xp 任务栏在右边
  • ubuntu安装sz
  • 如何手动修改VID与PID
  • win10系统版本20h2
  • 如何删除双系统中的linux系统
  • Linux查看内存的命令是
  • win10没有win8好用
  • Python scikit-learn 做线性回归的示例代码
  • perl -pi
  • jquery提交form表单数据
  • js正则表达式gi
  • shc加密后不能运行
  • javascriptwhile
  • android study
  • python爬虫入门教程
  • android事件处理方式有几种
  • 用jquery
  • 北京亦庄开发区属于哪个区
  • 纳税工会经费申请怎么写
  • 应交税费二级科目有哪些
  • 定额发票是如何开具的
  • 文明6地球地图自然奇观位置
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设