位置: IT常识 - 正文
推荐整理分享ICLR2023《Crossformer: Transformer Utilizing Cross-Dimension Dependency for Multivariate Time Series》,希望有所帮助,仅作参考,欢迎阅读内容。
文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!
这是一篇ICLR2023 top 5%论文 论文链接:https://openreview.net/pdf?id=vSVLM2j9eie 代码:https://github.com/Thinklab-SJTU/Crossformer
1. Multivariate Time Series ForecastingMTS,多变量时序数据预测。利用MTS的历史值可以预测其未来的趋势,例如心电图(ECG),脑电图(EEG)脑磁图(MEG)的诊断以及系统监测等等都是固有的多变量问题。该任务数据每个实例序列拥有多个维度,是一个d维向量和m个观测值(时间序列)的列表,如下所示数据(借鉴自综述论文:《The great multivariate time series classification bake off: a review and experimental evaluation of recent algorithmic advances》)
2. 动机MTS的核心额外复杂性在于,区别性特征可能存在于维度之间的相互作用中,而不仅仅存在于单个序列中的自相关性中。标准的Transformer中核心self-attention可能仅仅建模了单个序列的自相关性,忽略了跨维度的依赖关系。
此外,如下图所示,当数据序列很长时,计算复杂性高,但是可以观察到,接近的数据点具有相似的注意权重!
基于此,作者提出一个分层encoder-decoder框架Crossformer.
3. Crossformer目标:输入一段历史序列x1:T∈RT×Dx_{1:T} \in \mathbb{R}^{T\times D}x1:T∈RT×D,预测未来的一段序列xT+1:T+τ∈Rτ×Dx_{T+1:T+\tau} \in \mathbb{R}^{\tau \times D}xT+1:T+τ∈Rτ×D.
3.1 Hierarchical Encoder-Decoder作者提出一个新的层次Encoder-Decoder的架构,如下所示,由左边encoder(灰色)和右边decoder(浅橘色)组成。其主要包含Dimension-Segment-Wise (DSW) embedding,Two-Stage Attention (TSA)层和Linear Projection。
Dimension-Segment-Wise (DSW) embedding:为了将输入x1:T∈RT×Dx_{1:T} \in \mathbb{R}^{T\times D}x1:T∈RT×D进行分segment,从而减少计算复杂性。如果最后每个序列要分成LLL个segment,每个序列dmodeld_{model}dmodel的通道数,则最后的输入记为:Z∈RL×D×dmodelZ \in \mathbb{R}^{L \times D \times d_{model}}Z∈RL×D×dmodel.Two-Stage Attention (TSA)层:捕获cross-time和cross-dimension依赖关系。替待原来的self-attention在encoder和decoder中的位置。Linear Projection:应用于每一个decoder层的输出,以产生该层的预测。对各层预测结果进行求和,得到最终预测结果xT+1:T+τpredx^{pred}_{T+1:T+\tau}xT+1:T+τpred. 下面主要讲解DSW和TSA如何实现的!3.2 Dimension-Segment-Wise embedding (DSW)输入x1:T∈RT×Dx_{1:T} \in \mathbb{R}^{T\times D}x1:T∈RT×D,表明输入包含TTT个序列,每个序列有DDD个维度。如下所示,如果我们分的每个segment的长度为LsegL_{seg}Lseg,则每个序列中可以划分出TLseg\frac{T}{L_{seg}}LsegT个segment,每个序列有DDD个维度,则整个输入共包含TLseg×D\frac{T}{L_{seg}} \times DLsegT×D个segment,故x1:Tx_{1:T}x1:T可以记为:x1:T={xi,d(s)∣1≤i≤TLseg,1≤d≤D}x_{1:T}=\{x^{(s)}_{i,d}|1\le i \le \frac{T}{L_{seg}}, 1 \le d \le D \}x1:T={xi,d(s)∣1≤i≤LsegT,1≤d≤D}。在ddd维度中的第iii个segment的size记为xi,d(s)∈R1×Lsegx^{(s)}_{i,d} \in \mathbb{R}^{1 \times L_{seg}}xi,d(s)∈R1×Lseg,然后使用线性投影和位置嵌入将每个段嵌入到一个向量中: 其中hi,d∈Rdmodelh_{i,d} \in \mathbb{R}^{d_{model}}hi,d∈Rdmodel,E∈Rdmodel×LsegE \in \mathbb{R}^{d_{model} \times L_{seg}}E∈Rdmodel×Lseg表示可学习的映射矩阵。Ei,d(pos)∈RdmodelE^{(pos)}_{i,d} \in \mathbb{R}^{d_{model}}Ei,d(pos)∈Rdmodel表示在(i,d)(i,d)(i,d)位置的可学习位置嵌入。
最后,可以获得一个2D的向量数组H={hi,d∣1≤i≤TLseg,1≤d≤D}∈RTLseg×D×dmodelH=\{ h_{i,d}|1 \le i \le \frac{T}{L_{seg}},1 \le d \le D \} \in \mathbb{R}^{\frac{T}{L_{seg}} \times D \times d_{model}}H={hi,d∣1≤i≤LsegT,1≤d≤D}∈RLsegT×D×dmodel.
3.3 Two-Stage Attention (TSA)由上可得输入现在为:H∈RTLseg×D×dmodelH \in \mathbb{R}^{\frac{T}{L_{seg}} \times D \times d_{model}}H∈RLsegT×D×dmodel,为了方便,记L=TLsegL=\frac{T}{L_{seg}}L=LsegT,则输入为H∈RL×D×dmodelH \in \mathbb{R}^{L \times D \times d_{model}}H∈RL×D×dmodel。TSA主要由cross-time stage和 cross-dimension stage组成,如下图所示。
Cross-Time Stage 对于每个维度,包含所有时间序列。因此,对于ddd维度Z:,d∈RL×dmodelZ_{:,d} \in \mathbb{R}^{L \times d_{model}}Z:,d∈RL×dmodel上,cross-time依赖关系可记为: 其中1≤d≤D1 \le d \le D1≤d≤D,所有维度共享MSA(multi-head self-attention).Cross-Dimension Stage 对于每个时间点,包含所有维度。因此,对于第iii时间点Zi,:time∈RD×dmodelZ^{time}_{i,:} \in \mathbb{R}^{D \times d_{model}}Zi,:time∈RD×dmodel 1)如果使用标准Transformer进行,如下图所示,可以很容易得到复杂性为O(D2)\mathcal{O}(D^2)O(D2)!总共有LLL个时间segment,因此总复杂性为O(D2L)\mathcal{O}(D^2L)O(D2L). 2)作者引入router机制,每个时间点共享。如下图所示,Ri,:∈Rc×dmodelR_{i,:} \in \mathbb{R}^{c×d_{model}}Ri,:∈Rc×dmodel (ccc是常数)是作为路由器的可学习向量,作为第一个MSA的query. Bi,:∈Rc×dmodelB_{i,:} \in \mathbb{R}^{c×d_{model}}Bi,:∈Rc×dmodel,作为第二个MSA的key和value. 由上可知,第一个MSA复杂性为O(cDL)\mathcal{O}(cDL)O(cDL),第二个MSA也是如此,因此,最终复杂性为O(2cDL)\mathcal{O}(2cDL)O(2cDL),其中2c2c2c为常量,记复杂性变为O(DL)\mathcal{O}(DL)O(DL)!!4 实验SOTA方法对比 更多对比方法:
消融实验
参数分析
复杂性分析
可视化
运行速度对比
5. 结论提出了Crossformer,一种基于transformer的模型,利用跨维度依赖进行多元时间序列(MTS)预测。DSW (dimension - segment - wise)嵌入:将输入数据嵌入到二维矢量数组中,以保留时间和维度信息。为了捕获嵌入式阵列的跨时间和跨维度依赖关系,设计两阶段注意(TSA)层。利用DSW嵌入和TSA层,设计了一种分层编码器(HED)来利用不同尺度的信息。在6个数据集上的实验结果展示了该方法优于之前的先进技术。
以上仅为本人小记,有问题欢迎指出(●ˇ∀ˇ●)
下一篇:unplugin-auto-import 和 unplugin-vue-components(unplugin-auto-import/vite)
友情链接: 武汉网站建设