位置: IT常识 - 正文

ChatGPT 编写模式:如何高效地将思维框架赋予 AI ?

编辑:rootadmin
ChatGPT 编写模式:如何高效地将思维框架赋予 AI ?

推荐整理分享ChatGPT 编写模式:如何高效地将思维框架赋予 AI ?,希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!

如何理解 Prompt ?

Prompt Enginneering

prompt 通常指的是一个输入的文本段落或短语,作为生成模型输出的起点或引导。prompt 可以是一个问题、一段文字描述、一段对话或任何形式的文本输入,模型会基于 prompt 所提供的上下文和语义信息,生成相应的输出文本。

举个例子,对于一个语言模型,prompt 可以是 "The cat sat on the",模型可以通过对接下来的词语进行预测,生成类似于 "mat"、"chair"、"sofa" 等不同的输出:

The Cat

上图为 Stable Diffusion 生成 (Prompt: The cat sat on the , Steps: 30, Sampler: Euler a, CFG scale: 7, Seed: 234310862, Size: 512x512, Model hash: d8722b4a4d, Model: neverendingDreamNED_bakedVae)

Prompt 在人工智能语言生成领域中扮演着重要的角色,因为它可以帮助模型更好地理解用户意图,并生成更准确、有意义的文本内容。诸如于如下的 prompt

women back view without face, flowing dress, edge of the sea, backview, back turned to the camera, upon the glow of the setting sun, sun below the horizon, golden light over the water, hair sways gently, Chinese style clothes, black hair,

可以在 Stable Diffusion 生成图片(配置了 negative prompt):

所以,质量看上去不错,但是可能不是你想要的。在 ChatGPT 则可以生成文本,质量上也是相似的,但是对于 AI 输出的文本来说,质量并没有这么直观。

应用好 Prompt 的核心思想:概念与类比

开始之前,可以看一下这个问题示例:

设计模式的要素是哪些?

对于 AI 领域的 prompt 编写来说,我们通常使用的模式有哪些?

能将 AI 领域的 prompt 常见的设计模式用 "设计模式要素" 的格式一一表达吗?

核心思想,将设计模式要素作为一个概念,让 AI 类比到 prompt 里的模式。详细见:

design-pattern.analogy

design-pattern.analogy2

当然了,类比和定义概念不一定都会成功。

基础模式

四种基础模式:

By example (示例模式):在这种模式下,我们给模型提供一些示例文本,模型需要生成与示例文本类似的文本。这种模式通常用于生成类似于给定示例的文本,例如自动生成电子邮件、产品描述、新闻报道等。示例文本可以是单个句子或多个段落,具体取决于任务的要求。

By instruction template (指令模板):在这种模式下,我们给模型提供一些明确的指令,模型需要根据这些指令生成文本。这种模式通常用于生成类似于技术说明书、操作手册等需要明确指令的文本。指令可以是单个句子或多个段落,具体取决于任务的要求。

By specific (特定指令):在这种模式下,我们给模型提供一些特定信息,例如问题或关键词,模型需要生成与这些信息相关的文本。这种模式通常用于生成答案、解释或推荐等。特定信息可以是单个问题或多个关键词,具体取决于任务的要求。

By proxy(代理模式):在这种模式下,可以充当了一个代理,代表某个实体(例如人、角色、机器人等)进行操作或交互。代理模式的核心思想是引入一个中介对象来控制对实际对象的访问,从而实现一定程度上的隔离和保护。诸如于在 ChatGPT 中,"act as xxx" 可以让 ChatGPT 充当一个代理,扮演某个角色或实体的身份,以此来处理与该角色或实体相关的任务或请求。

By specific

Prompt Enginneering

在这种模式下,我们给模型提供一些示例文本,模型需要生成与示例文本类似的文本。这种模式通常用于生成类似于给定示例的文本,例如自动生成电子邮件、产品描述、新闻报道等。示例文本可以是单个句子或多个段落,具体取决于任务的要求。

如 翻译、 告诉我,以我们的开头来说:

定义一下 prompt 工程

类似的场景还可以有:

翻译一下:永和九年,岁在癸丑,暮春之初,会于会稽山阴之兰亭,修禊事也。

转为现代汉语:永和九年,岁在癸丑,暮春之初,会于会稽山阴之兰亭,修禊事也。

对应的,还有一系列的子模式

子模式

如我们通过下面的 prompt 转换了 ChatGPT 输出的子模式:

转化为 markdown 的 """ markdown {}""" 表格形式,其中的字段为英语模式、中文、简述、示例。

表格示例:

ChatGPT 编写模式:如何高效地将思维框架赋予 AI ?

By Instruction Template

Instruction

在这种模式下,我们给模型提供一些明确的指令,模型需要根据这些指令生成文本。这种模式通常用于生成类似于技术说明书、操作手册等需要明确指令的文本。指令可以是单个句子或多个段落,具体取决于任务的要求。

如下是一个示例:

使用 STAR 原则与下面的格式总结一下这段话:"""最近几天,因为工作 + 兴趣的原则,我在研究用 text 2 image 来展示如何演进 prompt、用 text 2 article 来展示充足 prompt 的优点、结合 GitHub Copliot 来实现 prompt 完成工作。然后,我在本地部署了一个 Stable Diffusion、使用 ChatGPT 写作展示 text 2 article、在 IDEA 中使用 GitHub Copilot。最后,得到了多篇文章和好多的文章阅读量、几个 Jupyter 代码段、以及一些经验。"""情境(Situation):任务(Task): <comma_separated_list_of_task>行动(Action): -||-结果(Result): -||-

输出文本时要注意中英文之间插入空格,留出间隔,诸如于 """Hello 你好""",用这种方式输出一下刚才的文本:

情境(Situation): 最近几天,在工作和兴趣的驱动下,研究如何使用 text 2 image 和 text 2 article 展示 prompt 演进以及结合 GitHub Copliot 来完成工作。任务(Task):研究如何使用 text 2 image 展示 prompt 的演进过程研究如何使用 text 2 article 展示 prompt 的优点结合 GitHub Copliot 来实现 prompt 完成工作行动(Action):本地部署了一个稳定的 Diffusion 模型使用 ChatGPT 撰写文章来展示 text 2 article 的效果在 IDEA 中使用 GitHub Copilot结果(Result):得到了多篇文章和很多的文章阅读量获得了几个 Jupyter 代码段以及相关经验By proxy

Proxy

Proxy 模式是指用户可以要求 ChatGPT 以特定的身份、角色或者身份扮演某个特定的人、角色或对象来生成回答。这种模式通常用于模拟某个特定人物的语言风格和语境,生成特定情境下的对话、回答或其他形式的文本。

例子 1:公司客服

当使用 ChatGPT 来代替某个人或实体时,可以使用 by proxy 模式。

例如,可以使用以下 prompt 提问 ChatGPT 代替某个公司的客服:

我是一家餐饮公司的客服,有顾客反馈说我们的菜品质量有问题,我们该怎么处理呢?

在这种情况下,ChatGPT 会扮演客服的角色,并根据提示来回答,从而帮助公司解决问题。ChatGPT 可以使用类似以下的方式来回答:

您好,很抱歉听到您的反馈。我们将会仔细审核您的反馈,并尽快采取相应措施来解决这个问题。为此,我们需要更多的信息来进一步了解您的反馈,包括哪些菜品有问题,具体问题是什么等。请问您可以提供更多的信息吗?

例子 2:终端计算机

这种方式可以通过让 ChatGPT 扮演某个实体的角色,例如客服、销售代表等等,来帮助用户解决问题。

在 Awesome ChatGPT Prompts 中:

Human: Act as a Linux Terminal

Robot:

ChatGPT: I want you to act as a linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. do not write explanations. do not type commands unless I instruct you to do so. When I need to tell you something in English, I will do so by putting text inside curly brackets {like this}. My first command is pwd

By demonstration

在这种模式下,我们给模型提供一些特定信息,例如问题或关键词,模型需要生成与这些信息相关的文本。这种模式通常用于生成答案、解释或推荐等。特定信息可以是单个问题或多个关键词,具体取决于任务的要求。

示例:

任务表述 颜色代表了温度例子1 绿色代表寒冷例子2 蓝色代表寒冷例子3 红色代表温暖例子4 黄色代表温暖执行 橙色代表什么例子 2:

上图为 Cohere AI 官网的示例图,对应的聊天记录如下:

English: Writing about language models is fun.Roish: Writingro aboutro languagero modelsro isro funro.English: The weather is lovely!Roish:增强 Prompt再生成模式

当我们无法确定我们的 prompt 是否准确,便可以通过 AI 来帮我们丰富 prompt 。如我在:基于编程、绘画、写作的 AI 探索与总结 的例了一样

phodal: 我想写一段话描述一张照片,帮我美化一下:一年轻女子穿着裙子,背对着镜头,在海边看着日落,太阳已经到地平线下面了,她的头发在风中飘动。

ChatGPT: 这张照片中的场景令人心醉,一位年轻女子穿着一条裙子,站在海边,背对着镜头,凝视着地平线下的夕阳。太阳已经沉入了海面,一片金黄色的光芒在海面上弥漫,照亮了整片海洋,仿佛这个时刻被定格在了时间的某个角落里。女子的头发随着微风轻轻飘动,轮廓被余晖映照得柔和而温暖。她的目光凝视着远方,仿佛在思考着生命的意义和无尽的未来。这张照片中蕴含着一种深刻的内涵,让人感受到时间和自然的力量,也让人思考着自己在这个宏大而美丽的世界中的角色和意义。

再去除掉不合适的词,进行润色,就可以再创作:

phodal:翻译成英语

然后再提炼直至扔至 Stable Diffusion 中:

women back view without face, flowing dress, edge of the sea, backview, back turned to the camera, upon the glow of the setting sun, sun below the horizon, golden light over the water, hair sways gently, Chinese style clothes, black hair,

而后,根据图片的结果,我们再反复修改。

控线模式

TODO:这里需要给出更精准的定义,如何让 ChatGPT 做到?

在没有推出 ControlNet,对于一个 Stable Diffusion 玩家,它需要反复地吟唱咒语,才能获取到满意的图案。

在有了 ControlNet 之后,我们可以创建一个 Openpose,或者是导入图片从图片生成 pose,相当于是给机器一个示例,而后生成的图片就会有令人满意的姿势:

在 GitHub Copilot,我们可以通过设置输入和输出,结合函数名三个要素,Copilot 就能生成大致准确的代码:

GitHub Copilot 示例

而在必要的情况下,添加一下注释就能更完整了:

fun listAllDirInDir(dir: String): List<File> {// ignore hidden files}

生成的代码会更贴近我们的需求。

拆解

对于复杂问题,ChaGPT 无法一次性输出全部内容,需要进行拆解。

已知问题:ChatGPT 当前版本会丢失上下文。

我们来定义一下 DDD 游戏的步骤,一共有 6 个步骤,步骤如下:"""第一步. 拆解场景。分析特定领域的所有商业活动,并将其拆解出每个场景。第二步. 场景过程分析。选定一个场景,并使用 "{名词}已{动词}" 的形式描述过程中所有发生的事件,其中的名词是过程中的实体,其中的动词是实体相关的行为。第三步. 针对场景建模。基于统一语言和拆解出的场景进行建模,以实现 DDD 设计与代码实现的双向绑定。第四步. 持续建模。回到第一步,选择未完成的场景。你要重复第一到第四步,直到所有的场景完成。第五步. 围绕模型生成子域。对模型进行分类,以划定不同的子域,需要列出所有的模型包含英语翻译。第六步. API 生成。对于每一个子域,生成其对应的 RESTful API,并以表格的形式展现这些 API。"""需要注意的是,当我说 """ddd 第 {} 步: {}""" 则表示进行第几步的分析,如 """ddd 第一步: 博客系统""" 表示只对博客系统进行 DDD 第一步分析。我发的是 """ddd: {}""",则表示按 6 个步骤分析:明白这个游戏怎么玩了吗?

完整过程见:DDD Sample

概念模式集Language is Language

对于 ChatGPT 来说,语言就是语言,他不区分自然语言和编程语言,甚至有可能编程语言对它更友好。所以我们可以直接通过编程语言与之交流:

我有下列遗留代码,我想在接口的函数名、参数名不变的情况下(可以新参数,旧的参数不能变)加入新功能:module.exports = async function loadYamlFile(filepath, workdir = path.dirname(filepath)) { const content = await fs.readFile(filepath, 'utf8'); // 读取文件内容 // TODO: 将 content 看做ejs模板的字符串,进行渲染,如果传入了渲染ejs时的context值不为undefined,就进行渲染,否则不进行渲染。 // TODO:将渲染后的结果传给yaml.load const data = yaml.load(content); // 解析YAML为JSON对象 // 遍历JSON对象,查找$ref属性 const processRef = async (obj) => { if (typeof obj === 'object' && obj !== null) { // 如果是对象 if ('$ref' in obj) { // 如果包含$ref属性 const refPath = path.join(workdir, obj.$ref.split('#')[0]); // 获取引用文件路径 const pointer = obj.$ref.split('#')[1]; // 获取JSON指针 // TODO: 递归调用的时候,取出context中以obj.$ref的属性值作为属性名的值作为新的context向下传递 const refData = await loadYamlFile(refPath, path.dirname(refPath)); // 递归读取引用文件 const value = getValueByPointer(refData, pointer); // 修复了 # 号问题 return value; } else { // 如果不包含$ref属性,递归处理子属性 for (const prop in obj) { obj[prop] = await processRef(obj[prop]); } } } return obj; };

上述描述会比纯自然语言更容易描述我们的需求,适合于更精细的指导。同时,不一定是编程语言,结构化的

本文链接地址:https://www.jiuchutong.com/zhishi/299061.html 转载请保留说明!

上一篇:一维信号的频域特征分析python(一维频率分布表)

下一篇:【Zabbix实战之部署篇】Zabbix客户端的安装部署方法

  • 上年度已交房产税减免如何做账务处理
  • 增值税专用发票抵扣期限
  • 一般纳税人季报是哪几个月报税
  • 税控盘及服务费会计分录
  • 业务活动成本和业务活动费用的区别
  • 什么是进项加计扣除
  • 无息贷款合同要按手印吗
  • 收到其他与筹资活动有关的现金计算公式
  • 车船税应该计入什么费用
  • 申报表季初资产和季末资产
  • 外贸企业出口退税计算公式
  • 自产产品用于职工福利确认收入吗
  • 政府补助应计入
  • 无形资产出租后还要摊销吗
  • 单位食堂油烟管道清洗记录表
  • 地产公司代办房产证
  • 会计累计折旧属于什么科目
  • 货运发票和提供建筑服务的专票备注怎么写?
  • 报税没有报怎么办
  • 发票为什么会查不到信息
  • 金税盘上报汇总是什么时候
  • 除工资外其他收入需要个税吗
  • 计提的工资没有实际发放,是否需要调增?
  • 前期物业管理公司
  • 购买机动车怎样抵扣进项税
  • 购买方取得专票会计分录
  • 多结转成本的会计分录
  • 公司账户替别人过账
  • 期末进项税额和销项税额都有余额
  • 研发费中废料收入怎么处理
  • 票据的追索权与再追索权
  • macbookpro怎么打开活动监视器
  • 转出未交增值税借方余额表示什么
  • 会计分录的书写规范
  • 应交增值税专栏下的增值税项目有哪些?
  • 销售退换货的账务处理
  • 其他收益最后转入哪个科目
  • 转出多交增值税账务处理
  • 企业预付账款怎么做账
  • 公司注销税款太多
  • 100%控股权什么意思
  • 一般商品销售的会计分录
  • 银行承兑汇票是商业汇票吗
  • 收缩数据库日志文件对数据有影响吗
  • 没进项发票开销项发票是可以吗?
  • 上一年度所得税忘记计提了怎么办
  • 房产置换怎么做
  • 年终奖能算在工资里吗
  • 固定资产净值如何处理
  • 标的编制费
  • 无发票材料可以入材料账吗
  • 购入无形资产属于资产吗
  • 按最低标准买社保30年退休后每个月领多少钱
  • 怎样可以冲销企业微信
  • 年底应交增值税是没有余额吗
  • 电子设备按5年折旧可以吗?
  • 库存商品与存货总额之比
  • 主营业务成本的增加在哪一方
  • 场地租用招标方案怎么写
  • 新准则会计科目解释
  • 管理费怎么扣除
  • 建账的要点
  • mysql rand整数
  • 深度解析天梁坐命
  • 系统如何修改
  • win8默认输入法设置
  • 桌面的word
  • 如何获取system权限win10
  • unity3d音效
  • JavaScript驾驭网页-DOM
  • nodejs libuv
  • Android 自定义view
  • python正则函数
  • 如何在网上开税票发票
  • 企业代缴房产税可以入账吗
  • 打印发票需要什么信息
  • 国家税务局大数据局
  • 税务负责人
  • 重庆市大学生田径锦标赛
  • 浙江农村医保手机上怎么缴费
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设