位置: IT常识 - 正文

【数据可视化】第五章—— 基于PyEcharts的数据可视化(数据可视化分析)

编辑:rootadmin
【数据可视化】第五章—— 基于PyEcharts的数据可视化 文章目录1. pyecharts数据可视化介绍2.pyecharts安装与使用3.全局配置项和系列配置项3.1 全局配置项3.1.1 基本元素配置项3.1.2 坐标轴配置项3.1.3 原生图形配置项3.2 系列配置项3.2.1 样式类配置项3.2.2 标记类型配置项3.2.3 其它类配置项4.运行环境4.1 生成HTML4.2 Jupyter Notebook4.3 Jupyter Lab5.Pyecharts可视化绘图5.1 柱状图5.2 折线图5.3 饼图5.4 箱型图5.5 涟漪散点图5.6 K线图5.7 雷达图6. Bar的基本使用7. Line的基本使用8. 饼图的基本使用9. 本章小结1. pyecharts数据可视化介绍

推荐整理分享【数据可视化】第五章—— 基于PyEcharts的数据可视化(数据可视化分析),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:数据可视化的方法有哪些,数据可视化分析工具有哪些,数据可视化分析工具有哪些,数据可视化案例,数据可视化案例,数据可视化工具软件,数据可视化工具有哪些?,数据可视化工具软件,内容如对您有帮助,希望把文章链接给更多的朋友!

pyecharts是一个用于生成 Echarts 图表的类库,是一款将Python与Echarts相结合的强大的数据可视化工具,使用pyecharts可以让开发者轻松的实现大数据的可视化。

官网 https://pyecharts.org/#/zh-cn/intro

Pyecharts是一个用于生成Echarts图表的库。代码相对简洁,可以生成Echarts风格的图表。

◾丰富的可视化类型: 提供了常规的折线图、柱状图、散点图、饼图、K线图,用于统计的盒形图,用于地理数据可视化的地图、热力图、线图,用于关系数据可视化的关系图、treemap、旭日图,多维数据可视化的平行坐标,还有用于 BI 的漏斗图,仪表盘,并且支持图与图之间的混搭。 ◾多种数据格式无需转换直接使用: 内置的 dataset 属性(4.0+)支持直接传入包括二维表,key-value 等多种格式的数据源,此外还支持输入 TypedArray 格式的数据。 ◾千万数据的前端展现: 通过增量渲染技术(4.0+),配合各种细致的优化,ECharts 能够展现千万级的数据量。 ◾移动端优化: 针对移动端交互做了细致的优化,例如移动端小屏上适于用手指在坐标系中进行缩放、平移。 PC 端也可以用鼠标在图中进行缩放(用鼠标滚轮)、平移等。 ◾多渲染方案,跨平台使用: 支持以 Canvas、SVG(4.0+)、VML 的形式渲染图表。 ◾深度的交互式数据探索: 提供了图例、视觉映射、数据区域缩放、tooltip、数据刷选等开箱即用的交互组件,可以对数据进行多维度数据筛取、视图缩放、展示细节等交互操作。 ◾多维数据的支持以及丰富的视觉编码手段: 对于传统的散点图等,传入的数据也可以是多个维度的。 ◾动态数据: 数据的改变驱动图表展现的改变。 ◾绚丽的特效: 针对线数据,点数据等地理数据的可视化提供了吸引眼球的特效。 ◾通过 GL 实现更多更强大绚丽的三维可视化: 在 VR,大屏场景里实现三维的可视化效果。 ◾无障碍访问(4.0+): 支持自动根据图表配置项智能生成描述,使得盲人可以在朗读设备的帮助下了解图表内容,让图表可以被更多人群访问。

2.pyecharts安装与使用

在使用pyecharts之前,首先要安装它。在Windows命令行中使用以下命令来执行安装过程:

pip install pyecharts

执行后,可输入以下命令查看:

pip list

如用户需要用到地图图表,可自行安装对应的地图文件包。命令如下:

pip install echarts-countries-pypkg #安装全球国家地图pip install echarts-china-provinces-pypkg#安装中国省级地图pip install echarts-china-cities-pypkg#安装中国市级地图

在安装完地图库以后,即可进行地图的数据可视化显示。

3.全局配置项和系列配置项

图形的参数配置是数据可视化的基础,Pyecharts中的参数配置比较简单,可分为全局配置项和系列配置项

3.1 全局配置项3.1.1 基本元素配置项

Pyecharts的基本元素配置项主要包括:InitOpts、ToolBoxFeatureOpts、ToolboxOpts、TitleOpts、DataZoomOpts、LegendOpts、VisualMapOpts、TooltipOpts等8个配置。 (1) InitOpts: (2) ToolBoxFeatureOpts: (3) ToolboxOpts: (4) TitleOpts: (5) DataZoomOpts : (6) LegendOpts: (7) VisualMapOpts: (8) TooltipOpts:

3.1.2 坐标轴配置项

Pyecharts的坐标轴配置项主要包括:AxisOpts、AxisLineOpts、AxisTickOpts、AxisPointerOpts、SingleAxisOpts等5个配置。

(1) AxisOpts: (2) AxisLineOpts:

(3) AxisTickOpts: (4) AxisPointerOpts: (5) SingleAxisOpts:

3.1.3 原生图形配置项

Pyecharts的原生图形配置项主要包括:GraphicGroup、GraphicItem、GraphicBasicStyleOpts、GraphicShapeOpts、GraphicImage、GraphicText、GraphicTextStyleOpts、GraphicRect等8个配置。 (1) GraphicGroup: (2) GraphicItem: (3) GraphicBasicStyleOpts: (4) GraphicShapeOpts: (5) GraphicImage: (6) GraphicText:

(7) GraphicTextStyleOpts: (8) GraphicRect:

3.2 系列配置项3.2.1 样式类配置项

Pyecharts的样式类配置项主要包括:ItemStyleOpts、TextStyleOpts、LabelOpts、LineStyleOpts、SplitLineOpts等5个配置。 (1) ItemStyleOpts: (2) TextStyleOpts: (3) LabelOpts: (4) LineStyleOpts: (5) SplitLineOpts:

3.2.2 标记类型配置项

Pyecharts的标记类型配置项主要包括:MarkPointItem、MarkPointOpts、MarkLineItem、MarkLineOpts、MarkAreaItem、MarkAreaOpts等6个配置。 (1) MarkPointItem: (2) MarkPointOpts:

(3) MarkLineItem : (4) MarkLineOpts: (5) MarkAreaItem: (6) MarkAreaOpts:

3.2.3 其它类配置项

Pyecharts的其它类配置项主要包括:EffectOpts、AreaStyleOpts、SplitAreaOpts等3个配置。 (1) EffectOpts: (2) AreaStyleOpts: (3) SplitAreaOpts:

4.运行环境4.1 生成HTML

Pyecharts可以通过render函数生成HTML文件,下面的代码将结果生成html文件。 …… bar.render(‘bar.html’)

4.2 Jupyter Notebook

Pyecharts可以在Jupyter Notebook环境中运行。 …… bar.render_notebook()

4.3 Jupyter Lab

Pyecharts可以在Jupyter Lab环境中运行。 …… #第一次渲染时候调用load_javascript文件 bar.load_javascript() bar.render_notebook()

5.Pyecharts可视化绘图

Pyecharts可以方便的绘制一些基础视图,包括柱状图,折线图,箱型图,涟漪散点图,K线图以及双坐标轴图等

5.1 柱状图

柱状图是一种把连续数据画成数据条的表现形式,通过比较不同组的柱状长度,从而对比不同组的数据量大小。 描绘柱状图的要素有3个:组数、宽度、组限。绘制柱状图时,不同组之间是有空隙的。柱状用来比较两个或以上的价值(不同时间或者不同条件),只有一个变量,通常利用与较小的数据集分析。柱状图也可以多维表达。

【数据可视化】第五章—— 基于PyEcharts的数据可视化(数据可视化分析)

(1) 参数配置: (2) 基本函数形式: c = ( Bar() .set_global_opts(title_opts=opts.TitleOpts(title=“Bar-基本示例”, subtitle=“我是副标题”,title_link=“https://pyecharts.org/#/zh-cn/”)) .add_xaxis(Faker.choose()) .add_yaxis(“商家A”, Faker.values()) .add_yaxis(“商家B”, Faker.values()) )

(3) 例:商家A与B商品订单数量分析 为了分析商家A与B商品订单数量,绘制了两个商家商品订单量的柱状图。

bar = Bar()bar = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) .add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]) .add_yaxis("商家A", [5, 20, 36, 10, 75, 90]) .add_yaxis("商家B", [15, 6, 45, 20, 35, 66]) .set_global_opts(title_opts=opts.TitleOpts(title="主标题", subtitle="副标题")))5.2 折线图

折线图是用直线段将各个数据点连接起来而组成的图像,以折线方式显示数据的变化趋势。折线图可以显示随时间而变化的连续数据,因此非常适合显示相等时间间隔的数据趋势。在折线图中,类别数据沿水平轴均匀分布,数值数据沿垂直轴均匀分布。例如为了显示不同订单日期的销售额走势,可以创建不同订单日期的销售额折线图。

(1) 参数配置: (2) 例:各门店销售业绩比较分析 为了比较企业门店销售业绩,绘制了各门店的销售额和利润额的折线图。 (3)基本函数形式:

line = Line()line.set_global_opts( title_opts = opts.TitleOpts(title = "门店销售额利润额的比较分析", subtitle = "2019年企业经营状况分析"), toolbox_opts = opts.ToolboxOpts(), legend_opts = opts.LegendOpts(is_show = True) )line.add_xaxis(v1)line.add_yaxis(“销售额”,v2,is_smooth = True) #is_smooth默认是False,即折线;is_selected默认是False,即不选中line.add_yaxis("利润额",v3,is_smooth = True, is_selected = True)5.3 饼图

基本函数形式:

c = ( Pie() .add("", [list(z) for z in zip(Faker.choose(), Faker.values())]) .set_colors(["blue", "green", "yellow", "red", "pink", "orange", "purple"]) .set_global_opts(title_opts=opts.TitleOpts(title="饼图")) .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}")))c.render_notebook()5.4 箱型图

箱型图是一种用作显示一组数据分散情况资料的统计图。在各种领域也经常被使用,常见于品质管理。 箱型图主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比较。 箱型图的绘制方法是:先找出一组数据的上边缘、下边缘、中位数和两个四分位数;然后,连接两个四分位数画出箱体;再将上边缘和下边缘与箱体相连接,中位数位于箱体中。

(1) 参数配置: (2) 例:2019年销售额和利润额分析 为了分析2019年的销售额和利润额情况,绘制了不同的箱型图 (3) 基本函数形式:

boxplot = Boxplot()boxplot.set_global_opts( title_opts = opts.TitleOpts(title = "2019年销售额和利润额分析",subtitle = "2019年企业经营状况分析"), toolbox_opts = opts.ToolboxOpts(is_show = False), legend_opts = opts.LegendOpts(is_show = True) )boxplot.add_xaxis(["2019年业绩"])boxplot.add_yaxis("销售额",boxplot.prepare_data([v2]))boxplot.add_yaxis("利润额",boxplot.prepare_data([v3]))5.5 涟漪散点图

涟漪散点图是一类特殊的散点图,只是散点图中带有涟漪特效,利用特效可以突出显示某些想要的数据。 (1) 参数配置: (2) 例:涟漪散点图各种图形 (3) 基本函数形式:

es = EffectScatter()es.set_global_opts( title_opts = opts.TitleOpts(title = "涟漪散点图分布",subtitle = "各种类型"), xaxis_opts = opts.AxisOpts(splitline_opts = opts.SplitLineOpts(is_show = True)), yaxis_opts = opts.AxisOpts(splitline_opts = opts.SplitLineOpts(is_show = True)), toolbox_opts = opts.ToolboxOpts(False), legend_opts = opts.LegendOpts(is_show = True) )es.add_xaxis(v1)es.add_yaxis("",v2,symbol = SymbolType.ARROW)es.render_notebook()5.6 K线图

K线图又称蜡烛图,股市及期货市场中的K线图的画法包含四个数据,即开盘价,最高价,最低价,收盘价,所有的K线都是围绕这四个指标展开,反映股票的情况。 如果把每日的K线图放在一张纸上,就能得到日K线图,同样也可以画出周K线图,月K线图。

(1) 参数配置: (2) 例:企业股票价格趋势分析 (3) 基本函数形式:

c = ( Kline() .set_global_opts( xaxis_opts=opts.AxisOpts(is_scale=True), yaxis_opts=opts.AxisOpts( is_scale=True, splitarea_opts=opts.SplitAreaOpts( is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1) ), ), datazoom_opts=[opts.DataZoomOpts(pos_bottom="-2%")], title_opts=opts.TitleOpts(title="Kline-ItemStyle"), ) .add_xaxis(["2017/7/{}".format(i + 1) for i in range(31)]) .add_yaxis( "kline", data, itemstyle_opts=opts.ItemStyleOpts( color="#ec0000", color0="#00da3c", border_color="#8A0000", border_color0="#008F28", ), ))5.7 雷达图

基本函数形式:

c = ( Radar() .add_schema( schema=[ …… ] ) .add("预算分配", v1,linestyle_opts=opts.LineStyleOpts(color="#CD0000")) .add("实际开销", v2,linestyle_opts=opts.LineStyleOpts(color="#5CACEE")) .set_series_opts(label_opts=opts.LabelOpts(is_show=False)) .set_global_opts( title_opts=opts.TitleOpts(title="Radar-单例模式"), ))6. Bar的基本使用import pyecharts.options as optsfrom pyecharts.charts import Barfrom pyecharts.faker import Fakerc = ( Bar() .set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题",title_link="https://pyecharts.org/#/zh-cn/")) .add_xaxis(Faker.choose()) .add_yaxis("商家A", Faker.values()) .add_yaxis("商家B", Faker.values()) ) c.render_notebook()

import pyecharts.options as optsfrom pyecharts.charts import Barfrom pyecharts.faker import Fakerx = [0,1,2,3,4,5]y = [1,2,3,2,4,3]c = Bar()c.set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="pyecharts",title_link="https://pyecharts.org/#/zh-cn/"))c.add_xaxis(x)c.add_yaxis("示例", y) #'label',数值# c.add_yaxis("商家B", Faker.values()) c.render_notebook()

import pyecharts.options as optsfrom pyecharts.charts import Barfrom pyecharts.faker import Fakerx = ['战狼2','速度与激情8','功夫瑜伽','西游伏妖篇', '变形金刚5:最后的骑士','摔跤吧!爸爸', '加勒比海盗5:死无对证','金刚:骷髅岛', '极限特工:终极回归','生化危机6:终章', '乘风破浪','神偷奶爸3','智取威虎山','大闹天竺', '金刚狼3:殊死一战','蜘蛛侠:英雄归来','悟空传', '银河护卫队2','情圣','新木乃伊']y = [56.01,26.94,17.53,16.49,15.45,12.96, 11.8,11.61,11.28,11.12,10.49,10.3,8.75, 7.55,7.32,6.99,6.88,6.86,6.58,6.23]c = Bar()c.set_global_opts(title_opts=opts.TitleOpts(title="电影票房", subtitle="pyecharts"))c.add_xaxis(x)c.add_yaxis("示例", y) #'label',数值# c.add_yaxis("商家B", Faker.values()) c.reversal_axis()c.render_notebook()

import pyecharts.options as optsfrom pyecharts.charts import Barfrom pyecharts.faker import Fakerfrom pyecharts.globals import ThemeTypea = ['猩球崛起3:终极之战','敦刻尔克','蜘蛛侠:英雄归来','战狼2']b_14 = [2358,399,2358,362]b_15 = [12357,156,2045,168]b_16 = [15746,312,4497,319]c = Bar(init_opts=opts.InitOpts(theme=ThemeType.MACARONS))c.set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="pyecharts"))c.add_xaxis(a)c.add_yaxis("14日票房", b_14, gap = '0%') #'label',数值c.add_yaxis("15日票房", b_15, gap = '0%') c.add_yaxis("16日票房", b_16, gap = '0%') # c.add_yaxis("商家B", Faker.values()) c.render_notebook()

import pyecharts.options as optsfrom pyecharts.charts import Barfrom pyecharts.faker import Fakerfrom pyecharts.globals import ThemeTypea = ['猩球崛起3:终极之战','敦刻尔克','蜘蛛侠:英雄归来','战狼2']b_14 = [2358,399,2358,362]b_15 = [12357,156,2045,168]b_16 = [15746,312,4497,319]c = Bar(init_opts=opts.InitOpts(theme=ThemeType.MACARONS))c.set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="pyecharts"))c.add_xaxis(a)c.add_yaxis("14日票房", b_14, gap = '0%', stack = '1') #'label',数值c.add_yaxis("15日票房", b_15, gap = '0%', stack = '1') c.add_yaxis("16日票房", b_16, gap = '0%') c.set_series_opts(label_opts=opts.LabelOpts(is_show=False))# c.add_yaxis("商家B", Faker.values()) c.render_notebook()

import pyecharts.options as optsfrom pyecharts.charts import Barfrom pyecharts.faker import Fakerfrom pyecharts.globals import ThemeTypea = ['猩球崛起3:终极之战','敦刻尔克','蜘蛛侠:英雄归来','战狼2']b_14 = [2358,399,2358,362]b_15 = [12357,156,2045,168]b_16 = [15746,312,4497,319]c = Bar(init_opts=opts.InitOpts(theme=ThemeType.VINTAGE))c.set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="pyecharts"))c.add_xaxis(a)c.add_yaxis("14日票房", b_14, gap = '0%') #'label',数值c.add_yaxis("15日票房", b_15, gap = '0%') c.add_yaxis("16日票房", b_16, gap = '0%') c.set_series_opts(label_opts=opts.LabelOpts(is_show=False), markline_opts=opts.MarkLineOpts( data=[ opts.MarkLineItem(type_="max", name="最大值"),# opts.MarkPointItem(type_="min", name="最小值"), # opts.MarkPointItem(type_="average", name="平均值"), ] ) )# c.add_yaxis("商家B", Faker.values()) c.render_notebook()

7. Line的基本使用import pyecharts.options as optsfrom pyecharts.charts import Linefrom pyecharts.faker import Fakerfrom pyecharts.globals import ThemeTypea = ['猩球崛起3:终极之战','敦刻尔克','蜘蛛侠:英雄归来','战狼2']b_14 = [2358,399,2358,362]b_15 = [12357,156,2045,168]b_16 = [15746,312,4497,319]c = Line(init_opts=opts.InitOpts(theme=ThemeType.VINTAGE))c.set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="pyecharts"))c.add_xaxis(a)c.add_yaxis("14日票房", b_14) #'label',数值c.add_yaxis("15日票房", b_15) c.add_yaxis("16日票房", b_16) c.set_series_opts(label_opts=opts.LabelOpts(is_show=False), markline_opts=opts.MarkLineOpts( data=[ opts.MarkLineItem(type_="max", name="最大值"),# opts.MarkPointItem(type_="min", name="最小值"), # opts.MarkPointItem(type_="average", name="平均值"), ] ) )# c.add_yaxis("商家B", Faker.values()) c.render_notebook()

import pyecharts.options as optsfrom pyecharts.charts import Linefrom pyecharts.faker import Fakerc = Line()c.add_xaxis(Faker.choose())c.add_yaxis("商家A", Faker.values())c.add_yaxis("商家B", Faker.values())c.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"))c.render_notebook()

import pyecharts.options as optsfrom pyecharts.charts import Linefrom pyecharts.faker import Fakerx = range(0,10,2)y = [2,1,3,5,4]c = Line()c.add_xaxis(x)c.add_yaxis("商家A", y, is_smooth = True, symbol="circle", symbol_size=15, linestyle_opts=opts.LineStyleOpts(color="green", width=3, type_="dashed"), label_opts=opts.LabelOpts(is_show=False), itemstyle_opts=opts.ItemStyleOpts( border_width=2, border_color="orange", color="purple" ),)# c.add_yaxis("商家B", Faker.values())c.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"))c.set_series_opts(label_opts=opts.LabelOpts(is_show=False), markpoint_opts=opts.MarkPointOpts( data=[ opts.MarkPointItem(type_="max", name="最大值"), opts.MarkPointItem(type_="min", name="最小值"),# opts.MarkPointItem(type_="average", name="平均值"), ] ) )c.render_notebook()

import pyecharts.options as optsfrom pyecharts.charts import Linefrom pyecharts.faker import Fakerx = range(0,10,2)y = [2,1,3,5,4]c = Line()c.add_xaxis(x)c.add_yaxis("商家A", y, is_smooth = True, symbol="circle", symbol_size=15, linestyle_opts=opts.LineStyleOpts(color="green", width=3, type_="dashed"), label_opts=opts.LabelOpts(is_show=False), itemstyle_opts=opts.ItemStyleOpts( border_width=2, border_color="orange", color="purple" ), areastyle_opts=opts.AreaStyleOpts(opacity=0.3))# c.add_yaxis("商家B", Faker.values())c.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"))c.set_series_opts(label_opts=opts.LabelOpts(is_show=False), markpoint_opts=opts.MarkPointOpts( data=[ opts.MarkPointItem(type_="max", name="最大值"), opts.MarkPointItem(type_="min", name="最小值"),# opts.MarkPointItem(type_="average", name="平均值"), ] ) )c.render_notebook()

import pyecharts.options as optsfrom pyecharts.charts import Linefrom pyecharts.globals import ThemeTypev1 = ["1月", "2月", "3月", "4月", "5月", "6月", "7月", "8月", "9月", "10月", "11月", "12月"]v2 = [24, 40, 101, 134, 90, 230, 210, 230, 120, 230, 210, 120] #北京v3 = [40, 64, 191, 324, 290, 330, 310, 213, 180, 200, 180, 79] #天津c = ( Line(init_opts=opts.InitOpts(theme=ThemeType.MACARONS)) .set_global_opts(title_opts=opts.TitleOpts(title="北京与天津个月销售数量分布的折线图"),legend_opts=opts.LegendOpts(is_show=True),datazoom_opts=opts.DataZoomOpts(), axispointer_opts= opts.AxisOpts(boundary_gap=["20%","20%"])) .add_xaxis(v1) .add_yaxis("北京",v2,stack=1,is_smooth=True,areastyle_opts=opts.AreaStyleOpts(opacity=0.5,color="purple")) .add_yaxis("天津", v3,stack=1,is_smooth=True,areastyle_opts=opts.AreaStyleOpts(opacity=0.5,color="red")) .set_series_opts(label_opts=opts.LabelOpts(is_show=False), markpoint_opts=opts.MarkPointOpts( data=[ opts.MarkPointItem(type_="max", name="最大值"), opts.MarkPointItem(type_="min", name="最小值"), opts.MarkPointItem(type_="average", name="平均值"), ]))) c.render_notebook()

8. 饼图的基本使用from pyecharts import options as optsfrom pyecharts.charts import Piefrom pyecharts.faker import Fakerfrom pyecharts.globals import ThemeType #定制主题c = Pie()c.add("", [list(z) for z in zip(Faker.choose(), Faker.values())])c.set_colors(["blue", "green", "yellow", "red", "pink", "orange", "purple"])c.set_global_opts(title_opts=opts.TitleOpts(title="饼图"))c.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"))c.render_notebook()

import matplotlib.pyplot as pltimport numpy as npimport matplotlibmatplotlib.rcParams['font.family'] = ['Kaiti'] #设置字体plt.figure(figsize = (5,5),dpi = 100)sizes = [45,30,15,10] #设置每部分大小labels = ['计算机系','机械系','管理系','社科系']explode = [0.1,0,0,0] #设置每部分凹凸colors = ['c','g','b','m']plt.pie(sizes, labels = labels, explode = explode, colors = colors, labeldistance = 1, autopct = '%.1f%%', counterclock = False, startangle = 90, shadow = True)plt.title('饼图',fontsize = 20);#设置标题plt.show()

from pyecharts import options as optsfrom pyecharts.charts import Piefrom pyecharts.faker import Fakerfrom pyecharts.globals import ThemeType #定制主题sizes = [45,30,15,10] #设置每部分大小labels = ['计算机系','机械系','管理系','社科系']c = Pie()c.add("", [list(z) for z in zip(labels, sizes)])c.set_colors(["blue", "green", "yellow", "red"])c.set_global_opts(title_opts=opts.TitleOpts(title="饼图"))c.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"))c.render_notebook()

from pyecharts import options as optsfrom pyecharts.charts import Piefrom pyecharts.faker import Fakerfrom pyecharts.globals import ThemeType #定制主题sizes = [45,30,15,10] #设置每部分大小labels = ['计算机系','机械系','管理系','社科系']c = Pie(init_opts=opts.InitOpts(theme=ThemeType.VINTAGE))c.add("", [list(z) for z in zip(labels, sizes)],radius=["40%", "75%"])# c.set_colors(["blue", "green", "yellow", "red"])c.set_global_opts(title_opts=opts.TitleOpts(title="饼图"))c.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"))c.render_notebook()

from pyecharts import options as optsfrom pyecharts.charts import Piefrom pyecharts.faker import Fakerfrom pyecharts.globals import ThemeType #定制主题sizes = [45,30,15,10] #设置每部分大小labels = ['计算机系','机械系','管理系','社科系']c = Pie(init_opts=opts.InitOpts(theme=ThemeType.VINTAGE))c.add("", [list(z) for z in zip(labels, sizes)], radius=["25%", "60%"], center=["25%", "50%"], rosetype="radius")c.add("", [list(z) for z in zip(labels, Faker.values())], radius=["25%", "75%"], center=["75%", "50%"], rosetype="radius")# c.set_colors(["blue", "green", "yellow", "red"])c.set_global_opts(title_opts=opts.TitleOpts(title="饼图"))c.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"))c.render_notebook()

from pyecharts.charts import Piefrom pyecharts import options as optsfrom pyecharts.globals import ThemeTypev1 = ["鲁帆", "章戎", "王海强", "诸葛菠萝", "徐天宏", "张明"]v2 = [25, 14, 12, 28, 8, 5]v2 = sorted(v2)c = ( Pie(init_opts=opts.InitOpts(theme=ThemeType.MACARONS)) .set_global_opts(title_opts=opts.TitleOpts(title="不同人发送邮件数量")) .add("", [list(z) for z in zip(v1, v2)],radius=['10%', '70%'],center=['50%', '50%'],rosetype="radius")# .set_colors(# ['rgb({r},10,{b})'.format(r=255-20*(len(v2)-x+1), b=255-15*x) for x in range(len(v2))]# ) .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%")) )c.render_notebook()

9. 本章小结

(1)ECharts是一个使用 JavaScript 实现的开源可视化库,可以流畅的运行在 PC 和移动设备上,并能够兼容当前绝大部分浏览器。在功能上,ECharts可以提供直观,交互丰富,可高度个性化定制的数据可视化图表。 (2)pyecharts 是一个用于生成 Echarts 图表的类库,是一款将Python与ECharts相结合的强大的数据可视化工具,使用pyecharts可以让开发者轻松的实现大数据的可视化。

本文链接地址:https://www.jiuchutong.com/zhishi/299452.html 转载请保留说明!

上一篇:VMware17虚拟机:下载和安装教程(vmware17虚拟机安装教程)

下一篇:【Web前端】CSS-盒子模型(web前端 css)

  • 红米k40相机专业模式怎么调(红米K40相机专业分别代表什么)

    红米k40相机专业模式怎么调(红米K40相机专业分别代表什么)

  • 华为黑名单来电提示音怎么改(华为手机来电显示私人号码)

    华为黑名单来电提示音怎么改(华为手机来电显示私人号码)

  • 华为畅享10s发布时间 (华为畅享10什么时候上市,上市多少钱)

    华为畅享10s发布时间 (华为畅享10什么时候上市,上市多少钱)

  • 腾讯退款多久到账(腾讯退款多久到账户)

    腾讯退款多久到账(腾讯退款多久到账户)

  • 微信视频动态是不是都能看到(微信视频动态是不是取消了)

    微信视频动态是不是都能看到(微信视频动态是不是取消了)

  • 苹果xr突然黑屏无反应(苹果xr突然黑屏开不了机怎么办)

    苹果xr突然黑屏无反应(苹果xr突然黑屏开不了机怎么办)

  • 微信怎么发送大于100m的视频(微信怎么发送大视频文件)

    微信怎么发送大于100m的视频(微信怎么发送大视频文件)

  • 怎么把两张图片p在一起(怎么把两张图片p到一张图片上)

    怎么把两张图片p在一起(怎么把两张图片p到一张图片上)

  • 红米k20pro充电速度(红米k20pro充电变慢是什么原因)

    红米k20pro充电速度(红米k20pro充电变慢是什么原因)

  • 关闭手机屏保设置在哪里(如果关闭手机屏保)

    关闭手机屏保设置在哪里(如果关闭手机屏保)

  • 如何更改工作簿的名称(如何更改工作簿名称颜色)

    如何更改工作簿的名称(如何更改工作簿名称颜色)

  • 华为手机来电话屏幕不显示(华为手机来电话显示私人号码)

    华为手机来电话屏幕不显示(华为手机来电话显示私人号码)

  • 硬盘黑盘蓝盘紫盘绿盘区别(硬盘黑盘蓝盘紫盘绿盘外观区别)

    硬盘黑盘蓝盘紫盘绿盘区别(硬盘黑盘蓝盘紫盘绿盘外观区别)

  • 支付宝扫码付款可以联系到对方吗(支付宝扫码付款怎么查记录)

    支付宝扫码付款可以联系到对方吗(支付宝扫码付款怎么查记录)

  • 苹果手机设置里面怎么变黑了(苹果手机设置里的小红点怎么去掉)

    苹果手机设置里面怎么变黑了(苹果手机设置里的小红点怎么去掉)

  • iphone几开始有指纹解锁(iphone几开始没有指纹)

    iphone几开始有指纹解锁(iphone几开始没有指纹)

  • reno屏幕分辨率(reno屏幕分辨率是多少)

    reno屏幕分辨率(reno屏幕分辨率是多少)

  • word默认纸张大小多少(word默认纸张大小是多少)

    word默认纸张大小多少(word默认纸张大小是多少)

  • ps怎么缩小一个页面(ps怎么缩小一个图片)

    ps怎么缩小一个页面(ps怎么缩小一个图片)

  • win10更新好慢怎么跳过(win10更新 很慢)

    win10更新好慢怎么跳过(win10更新 很慢)

  • 向日葵付费和免费区别(向日葵收费版的会流畅点吗)

    向日葵付费和免费区别(向日葵收费版的会流畅点吗)

  • 爱奇艺字幕没了怎么办(爱奇艺字幕没了怎么办手机版)

    爱奇艺字幕没了怎么办(爱奇艺字幕没了怎么办手机版)

  • myeclip和eclipse区别(eclipse和myeclipse有区别吗)

    myeclip和eclipse区别(eclipse和myeclipse有区别吗)

  • 小米手机定位怎么关(小米手机定位怎么改变自己的位置)

    小米手机定位怎么关(小米手机定位怎么改变自己的位置)

  • qq面对面快传用不了(qq面对面快传用的什么)

    qq面对面快传用不了(qq面对面快传用的什么)

  • 苹果屏幕时间怎么关闭(苹果屏幕时间怎么设置)

    苹果屏幕时间怎么关闭(苹果屏幕时间怎么设置)

  • 如何禁用win10的自动窗口分屏功能(win10如何禁用administrator用户)

    如何禁用win10的自动窗口分屏功能(win10如何禁用administrator用户)

  • 如何激活Windows 11正式版?Win11正式版激活序列号KE大全(如何激活windows11专业版?)

    如何激活Windows 11正式版?Win11正式版激活序列号KE大全(如何激活windows11专业版?)

  • JSONP解决跨域问题(jsonp解决跨域问题spring3.0)

    JSONP解决跨域问题(jsonp解决跨域问题spring3.0)

  • 【JavaScript】五个常用功能/案例:计时器 | 流程控制 | 闭包应用 | arguments剩余参数 | 二次封装函数(javascriptj)

    【JavaScript】五个常用功能/案例:计时器 | 流程控制 | 闭包应用 | arguments剩余参数 | 二次封装函数(javascriptj)

  • 印花税计算是含增值税吗
  • 代扣代缴个人所得税手续费返还 增值税
  • 煤炭企业生产能力
  • 促成自然灾害的原因
  • 可供出售金融资产和交易性金融资产
  • 汇票没到期可以撤回吗
  • 成品油红字发票开错了
  • 增值税计算方式举例
  • 债券的投资收益率
  • 客户退货金额小怎么说
  • 未入账的记账凭证有误处理方法
  • 报价需要提供哪些资料
  • 商砼税率是多少?
  • 固定资产原值是含税还是不含税
  • 固定成本与变动成本的区别
  • lec风险评价方法
  • 职工福利费进项税转出怎样做账务处理
  • 收到专用发票的会计分录
  • 外籍人士可以回国吗
  • 消费税的纳税义务人
  • windows7远程桌面连接在哪里
  • 如何备份电脑系统到另外一个硬盘
  • 会计实务加班费的账务处理
  • mac怎么删除应用程序中没有的软件
  • linux乱码怎么改
  • 一次性收入怎么交税
  • 公益性捐赠申报填列
  • 运输发票的抵扣税率
  • 完美替身好看吗
  • 利润表项目本期怎么算
  • 增值税缓交政策
  • 正在求偶的凤头卡拉鹰,美国德克萨斯州 (© Alan Murphy/Minden Pictures)
  • 折旧和摊销的区别通俗
  • 销售多余的材料
  • vue网上商城项目
  • 汇算清缴退税分录怎么写
  • 电子税务局怎么注册
  • 企业可以收付实现制记账吗
  • 财务报表报送与信息采集(小企业会计准则)季报
  • 业务招待费进项税额转出会计分录
  • 全年多少钱就得交税
  • 投资性房地产对外出租的账务处理
  • 本年利润的会计分录怎么做
  • 固定成本和变动成本包括哪些
  • 企业合并财务报表
  • 残保金申报常见问题
  • 个人转让不动产交印花税吗
  • 酒店没有营业执照开业犯法吗
  • 发票开错是不是可以作废?
  • 汇算清缴退税分录怎么做
  • 支付收购股权款如何做账
  • 预付账款余额在贷方为
  • 应收账款多久收不回来作为坏账
  • 应交增值税一转出未交增值税
  • 残保金计算公式2023年
  • 企业支付宝问题解决
  • mysql newid()
  • Mac下mysql 5.7.17 安装配置方法图文教程
  • win10预览版21277
  • windows补丁是什么
  • 如何重装系统win7具体步骤
  • linux和windows关系
  • windows102021年更新
  • linux 如何
  • javascript中的3种继承实现方法
  • SlidingMenu属性详解【Android】
  • perl里怎么对数组实现一次遍历
  • 文档对象模型DOM主要作用是
  • 置顶朋友圈所有人能看到吗
  • android binary xml
  • linux的ftp命令
  • js中split方法的作用
  • javascript教程完整版
  • 安卓手机管家删除的照片怎么恢复
  • LeakCanary小记
  • 12366纳税服务热线坐席人员
  • 电子税务局财务报表利润表本期金额
  • 执法事业单位改革最新进展
  • 河南省税务局系统最新消息
  • 公司迁税务所流程
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设