位置: IT常识 - 正文

语义分割系列25-BiSeNetV2(pytorch实现)(语义分割入门教程)

编辑:rootadmin
语义分割系列25-BiSeNetV2(pytorch实现)

推荐整理分享语义分割系列25-BiSeNetV2(pytorch实现)(语义分割入门教程),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:语义分割什么意思,语义分割入门教程,语义分割常用算法,语义分割常用算法,语义分割常用算法,语义分割项目实战,语义分割segnet,语义分割入门,内容如对您有帮助,希望把文章链接给更多的朋友!

继BiSeNetV1之后(语义分割系列16-BiSeNetV1),BiSeNetV2在2021年IJCV上发布。

论文链接:BiSeNetV2

相比于V1版本,V2版本在下采样策略、卷积类型、特征融合等方面做了诸多改进。

本文将介绍:

BiSeNetV2如何设计Semantic Branch和Detail Branch。BiSeNetV2如何设计Aggregation Layer完成特征融合。BiSeNetV2如何设计Auxiliary Loss来帮助模型训练。BiSeNetV2的代码实现与应用。

目录

论文部分

引文

模型

Backbone-Detail Branch

Backbone-Semantic Branch

Aggregation Layer

分割头SegHead

Booster(auxiliary Loss)

BiSeNetV2实现以及在Camvid上应用

BiSeNetV2实现

Camvid dataset

Train

Result

论文部分引文

BiSeNetV1版本的双路分割结构在实时分割的任务中取得了不错的效果,这种网络结构能够保留低级细节和高级语义,同时又不会损害推理速度,很好的权衡了实现准确的语义分割任务和快速的推理速度之间的平衡。

因此,提出了基于双路的分段网络-BiSeNetV2来实现实时的语义分割。

相比于初版BiSeNetV1:

V2简化了原始结构,使网络更加高效使用更加紧凑的网络结构以及精心设计的组件,加深了Semantic Branch的网络,使用更加轻巧的深度可分离卷积来加速模型。设计了更为有效的Aggregation Layer,以增强Semantic Branch和Detail Branch之间的链接。

模型

首先看模型的整体结构:

图1 BiSeNetV2模型结构

 BiSeNetV2主要包含几个结构:

紫色框(backbone)内的双路分支,上为Detail Branch分支,下为Semantic Branch分支。橙色框(Aggregation Layer)内的Aggregation Layer聚合层。黄色框(Booster)内的Auxiliary Loss分支。

首先,我们先介绍紫色框backbone部分。

Backbone-Detail Branch

对于Detail Branch,依旧使用类VGG的网络结构,这一部分结构较为简单,用于快速下采样并得到细分的feature map。

代码部分如下:

import torchimport torch.nn as nnclass DetailBranch(nn.Module): def __init__(self, detail_channels=(64, 64, 128), in_channels=3): super(DetailBranch, self).__init__() self.detail_branch = nn.ModuleList() for i in range(len(detail_channels)): if i == 0: self.detail_branch.append( nn.Sequential( nn.Conv2d(in_channels, detail_channels[i], 3, stride=2, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), ) ) else: self.detail_branch.append( nn.Sequential( nn.Conv2d(detail_channels[i-1], detail_channels[i], 3, stride=2, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU() ) ) def forward(self, x): for stage in self.detail_branch: x = stage(x) return xif __name__ == "__main__": x = torch.randn(3, 3, 224, 224) net = DetailBranch(detail_channels=(64, 64, 128), in_channels=3) out = net(x) print(out.shape)Backbone-Semantic Branch语义分割系列25-BiSeNetV2(pytorch实现)(语义分割入门教程)

Semantic Branch与Detail Branch平行,主要用于捕获高级语义信息。在这一个分支中,通道数比较少,因为更多信息可以由Detail Branch提供。由于获取高级语义信息需要上下文的依赖和较大的感受野,所以,在这一个分支中,使用快速采样的策略来迅速扩大感受野;使用全局平均池化来嵌入上下文信息。

作者在这部分做了较为精心的设计,主要包括三部分:

Stem Block用于快速下采样;Gather-and-Expansion Layer(GE Layer)用于卷积获取细节信息。Context Embedding Block(CE Layer)用于嵌入上下文信息。

Stem Block 和CE Block结构

Stem Block和CE Block的结构较为简单。

图2 Stem Block 和CE Block结构

代码实现:

import torchimport torch.nn as nnimport torch.nn.functional as Fclass StemBlock(nn.Module): def __init__(self, in_channels=3, out_channels=16): super(StemBlock, self).__init__() self.conv_in = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) self.conv_branch = nn.Sequential( nn.Conv2d(out_channels, out_channels//2, 1), nn.BatchNorm2d(out_channels//2), nn.ReLU(), nn.Conv2d(out_channels//2, out_channels, 3, stride=2, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=False) self.fusion = nn.Sequential( nn.Conv2d(2*out_channels, out_channels, 3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) def forward(self, x): x = self.conv_in(x) x_branch = self.conv_branch(x) x_downsample = self.pool(x) out = torch.cat([x_branch, x_downsample], dim=1) out = self.fusion(out) return outif __name__ == "__main__": x = torch.randn(3, 3, 224, 224) net = StemBlock() out = net(x) print(out.shape)class CEBlock(nn.Module): def __init__(self,in_channels=16, out_channels=16): super(CEBlock, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.gap = nn.Sequential( nn.AdaptiveAvgPool2d((1, 1)), # AdaptiveAvgPool2d 把形状变为(Batch size, N, 1, 1)后,batch size=1不能正常通过BatchNorm2d, 但是batch size>1是可以正常通过的 # nn.BatchNorm2d(self.in_channels) ) self.conv_gap = nn.Sequential( nn.Conv2d(self.in_channels, self.out_channels, 1, stride=1, padding=0), # nn.BatchNorm2d(self.out_channels), 同上 nn.ReLU() ) # Note: in paper here is naive conv2d, no bn-relu self.conv_last = nn.Conv2d( in_channels=self.out_channels, out_channels=self.out_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): identity = x x = self.gap(x) x = self.conv_gap(x) x = identity + x x = self.conv_last(x) return xif __name__ == "__main__": x = torch.randn(1, 16, 224, 224) net = CEBlock() out = net(x) print(out.shape)

GE Block结构

图3 GE Block结构(b,c)

对于GE Block,分为是否进行下采样两个模块,不进行下采样的GE Block(b)和进行下采样的GE Block。作者在这里借鉴了MobileNetv2中的倒瓶颈结构设计,为了减少计算量,中间使用一个深度可分离卷积。

下面给出GE Block的代码:

import torchimport torch.nn as nnclass depthwise_separable_conv(nn.Module): def __init__(self, in_channels, out_channels, stride): super(depthwise_separable_conv, self).__init__() self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=stride, padding=1, groups=in_channels) self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1) def forward(self, x): out = self.depthwise(x) out = self.pointwise(out) return outclass GELayer(nn.Module): def __init__(self, in_channels, out_channels, exp_ratio=6, stride=1): super(GELayer, self).__init__() mid_channel = in_channels * exp_ratio self.conv1 = nn.Sequential( nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1,padding=1), nn.BatchNorm2d(in_channels), nn.ReLU() ) if stride == 1: self.dwconv = nn.Sequential( # ReLU in ConvModule not shown in paper nn.Conv2d(in_channels, mid_channel, 3, stride=stride, padding=1, groups=in_channels), nn.BatchNorm2d(mid_channel), nn.ReLU(), depthwise_separable_conv(mid_channel, mid_channel, stride=1), nn.BatchNorm2d(mid_channel), ) self.shortcut = None else: self.dwconv = nn.Sequential( nn.Conv2d(in_channels, mid_channel, 3, stride=1, padding=1, groups=in_channels,bias=False), nn.BatchNorm2d(mid_channel), nn.ReLU(), # ReLU in ConvModule not shown in paper depthwise_separable_conv(mid_channel, mid_channel, stride=stride), nn.BatchNorm2d(mid_channel), depthwise_separable_conv(mid_channel, mid_channel, stride=1), nn.BatchNorm2d(mid_channel), ) self.shortcut = nn.Sequential( depthwise_separable_conv(in_channels, out_channels, stride=stride), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, 1), nn.BatchNorm2d(out_channels), ) self.conv2 = nn.Sequential( nn.Conv2d(mid_channel, out_channels, kernel_size=1, stride=1, padding=0,bias=False), nn.BatchNorm2d(out_channels) ) self.act = nn.ReLU() def forward(self, x): identity = x x = self.conv1(x) x = self.dwconv(x) x = self.conv2(x) if self.shortcut is not None: shortcut = self.shortcut(identity) x = x + shortcut else: x = x + identity x = self.act(x) return xif __name__ == "__main__": x = torch.randn(3, 16, 224, 224) net = GELayer(in_channels=16, out_channels=16, stride=2) out = net(x) print(out.shape)

Semantic Branch的代码:

class SemanticBranch(nn.Module): def __init__(self, semantic_channels=(16, 32, 64, 128), in_channels=3, exp_ratio=6): super(SemanticBranch, self).__init__() self.in_channels = in_channels self.semantic_channels = semantic_channels self.semantic_stages = nn.ModuleList() for i in range(len(semantic_channels)): if i == 0: self.semantic_stages.append(StemBlock(self.in_channels, semantic_channels[i])) elif i == (len(semantic_channels) - 1): self.semantic_stages.append( nn.Sequential( GELayer(semantic_channels[i - 1], semantic_channels[i], exp_ratio, 2), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1) ) ) else: self.semantic_stages.append( nn.Sequential( GELayer(semantic_channels[i - 1], semantic_channels[i], exp_ratio, 2), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1) ) ) self.semantic_stages.append(CEBlock(semantic_channels[-1], semantic_channels[-1])) def forward(self, x): semantic_outs = [] for semantic_stage in self.semantic_stages: x = semantic_stage(x) semantic_outs.append(x) return semantic_outsif __name__ == "__main__": x = torch.randn(3, 3, 224, 224) net = SemanticBranch() out = net(x) print(out[0].shape) print(out[1].shape) print(out[2].shape) print(out[3].shape) print(out[4].shape) # from torchsummary import summary # summary(net.cuda(), (3, 224, 224))Aggregation Layer

Aggregation Layer接受了Detail Branch和Semantic Branch的结果,通过图4中的一系列操作进行特征融合。

图4 Aggregation Layer结构

 代码实现:

import torchimport torch.nn as nnimport torch.nn.functional as Fclass AggregationLayer(nn.Module): def __init__(self, in_channels, out_channels): super(AggregationLayer, self).__init__() self.Conv_DetailBranch_1 = nn.Sequential( depthwise_separable_conv(in_channels, out_channels, stride=1), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, 1) ) self.Conv_DetailBranch_2 = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(out_channels), nn.AvgPool2d(kernel_size=3, stride=2, padding=1), ) self.Conv_SemanticBranch_1 = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.Upsample(scale_factor=4, mode="bilinear", align_corners=True), nn.Sigmoid() ) self.Conv_SemanticBranch_2 = nn.Sequential( depthwise_separable_conv(in_channels, out_channels, stride=1), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.Sigmoid() ) self.conv_out = nn.Sequential( nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), ) def forward(self, Detail_x, Semantic_x): DetailBranch_1 = self.Conv_DetailBranch_1(Detail_x) DetailBranch_2 = self.Conv_DetailBranch_2(Detail_x) SemanticBranch_1 = self.Conv_SemanticBranch_1(Semantic_x) SemanticBranch_2 = self.Conv_SemanticBranch_2(Semantic_x) out_1 = torch.matmul(DetailBranch_1, SemanticBranch_1) out_2 = torch.matmul(DetailBranch_2, SemanticBranch_2) out_2 = F.interpolate(out_2, scale_factor=4, mode="bilinear", align_corners=True) out = torch.matmul(out_1, out_2) out = self.conv_out(out) return outif __name__ == "__main__": Detail_x = torch.randn(3, 56, 224, 224) Semantic_x = torch.randn(3, 56, 224//4, 224//4) net = AggregationLayer(in_channels=56, out_channels=122) out = net(Detail_x, Semantic_x) print(out.shape)分割头SegHead

检测头的实现比较简单。

class SegHead(nn.Module): def __init__(self, channels, num_classes): super().__init__() self.cls_seg = nn.Sequential( nn.Conv2d(channels, channels, 3, padding=1), nn.BatchNorm2d(channels), nn.ReLU(), nn.Conv2d(channels, num_classes, 1), ) def forward(self, x): return self.cls_seg(x)Booster(auxiliary Loss)

作者在Semantic Branch中引出了几个Auxiliary Loss分支,对比了集中Auxiliary Loss组合的性能,得出如下结果。

BiSeNetV2实现以及在Camvid上应用BiSeNetV2实现import torchimport torch.nn as nnimport torch.nn.functional as Fclass StemBlock(nn.Module): def __init__(self, in_channels=3, out_channels=16): super(StemBlock, self).__init__() self.conv_in = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) self.conv_branch = nn.Sequential( nn.Conv2d(out_channels, out_channels//2, 1), nn.BatchNorm2d(out_channels//2), nn.ReLU(), nn.Conv2d(out_channels//2, out_channels, 3, stride=2, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=False) self.fusion = nn.Sequential( nn.Conv2d(2*out_channels, out_channels, 3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) def forward(self, x): x = self.conv_in(x) x_branch = self.conv_branch(x) x_downsample = self.pool(x) out = torch.cat([x_branch, x_downsample], dim=1) out = self.fusion(out) return outclass depthwise_separable_conv(nn.Module): def __init__(self, in_channels, out_channels, stride): super(depthwise_separable_conv, self).__init__() self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=stride, padding=1, groups=in_channels) self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1) def forward(self, x): out = self.depthwise(x) out = self.pointwise(out) return outclass GELayer(nn.Module): def __init__(self, in_channels, out_channels, exp_ratio=6, stride=1): super(GELayer, self).__init__() mid_channel = in_channels * exp_ratio self.conv1 = nn.Sequential( nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1,padding=1), nn.BatchNorm2d(in_channels), nn.ReLU() ) if stride == 1: self.dwconv = nn.Sequential( # ReLU in ConvModule not shown in paper nn.Conv2d(in_channels, mid_channel, 3, stride=stride, padding=1, groups=in_channels), nn.BatchNorm2d(mid_channel), nn.ReLU(), depthwise_separable_conv(mid_channel, mid_channel, stride=1), nn.BatchNorm2d(mid_channel), ) self.shortcut = None else: self.dwconv = nn.Sequential( nn.Conv2d(in_channels, mid_channel, 3, stride=1, padding=1, groups=in_channels,bias=False), nn.BatchNorm2d(mid_channel), nn.ReLU(), # ReLU in ConvModule not shown in paper depthwise_separable_conv(mid_channel, mid_channel, stride=stride), nn.BatchNorm2d(mid_channel), depthwise_separable_conv(mid_channel, mid_channel, stride=1), nn.BatchNorm2d(mid_channel), ) self.shortcut = nn.Sequential( depthwise_separable_conv(in_channels, out_channels, stride=stride), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, 1), nn.BatchNorm2d(out_channels), ) self.conv2 = nn.Sequential( nn.Conv2d(mid_channel, out_channels, kernel_size=1, stride=1, padding=0,bias=False), nn.BatchNorm2d(out_channels) ) self.act = nn.ReLU() def forward(self, x): identity = x x = self.conv1(x) x = self.dwconv(x) x = self.conv2(x) if self.shortcut is not None: shortcut = self.shortcut(identity) x = x + shortcut else: x = x + identity x = self.act(x) return xclass CEBlock(nn.Module): def __init__(self,in_channels=16, out_channels=16): super(CEBlock, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.gap = nn.Sequential( nn.AdaptiveAvgPool2d((1, 1)), # AdaptiveAvgPool2d 把形状变为(Batch size, N, 1, 1)后,batch size=1不能正常通过BatchNorm2d, 但是batch size>1是可以正常通过的。如果想开启BatchNorm,训练时batch size>1即可,测试时使用model.eval()即不会报错。 # nn.BatchNorm2d(self.in_channels) ) self.conv_gap = nn.Sequential( nn.Conv2d(self.in_channels, self.out_channels, 1, stride=1, padding=0), # nn.BatchNorm2d(self.out_channels), 同上 nn.ReLU() ) # Note: in paper here is naive conv2d, no bn-relu self.conv_last = nn.Conv2d( in_channels=self.out_channels, out_channels=self.out_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): identity = x x = self.gap(x) x = self.conv_gap(x) x = identity + x x = self.conv_last(x) return xclass DetailBranch(nn.Module): def __init__(self, detail_channels=(64, 64, 128), in_channels=3): super(DetailBranch, self).__init__() self.detail_branch = nn.ModuleList() for i in range(len(detail_channels)): if i == 0: self.detail_branch.append( nn.Sequential( nn.Conv2d(in_channels, detail_channels[i], 3, stride=2, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), ) ) else: self.detail_branch.append( nn.Sequential( nn.Conv2d(detail_channels[i-1], detail_channels[i], 3, stride=2, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU(), nn.Conv2d(detail_channels[i], detail_channels[i], 3, stride=1, padding=1), nn.BatchNorm2d(detail_channels[i]), nn.ReLU() ) ) def forward(self, x): for stage in self.detail_branch: x = stage(x) return xclass SemanticBranch(nn.Module): def __init__(self, semantic_channels=(16, 32, 64, 128), in_channels=3, exp_ratio=6): super(SemanticBranch, self).__init__() self.in_channels = in_channels self.semantic_channels = semantic_channels self.semantic_stages = nn.ModuleList() for i in range(len(semantic_channels)): if i == 0: self.semantic_stages.append(StemBlock(self.in_channels, semantic_channels[i])) elif i == (len(semantic_channels) - 1): self.semantic_stages.append( nn.Sequential( GELayer(semantic_channels[i - 1], semantic_channels[i], exp_ratio, 2), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1) ) ) else: self.semantic_stages.append( nn.Sequential( GELayer(semantic_channels[i - 1], semantic_channels[i], exp_ratio, 2), GELayer(semantic_channels[i], semantic_channels[i], exp_ratio, 1) ) ) self.semantic_stages.append(CEBlock(semantic_channels[-1], semantic_channels[-1])) def forward(self, x): semantic_outs = [] for semantic_stage in self.semantic_stages: x = semantic_stage(x) semantic_outs.append(x) return semantic_outsclass AggregationLayer(nn.Module): def __init__(self, in_channels, out_channels): super(AggregationLayer, self).__init__() self.Conv_DetailBranch_1 = nn.Sequential( depthwise_separable_conv(in_channels, out_channels, stride=1), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, 1) ) self.Conv_DetailBranch_2 = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(out_channels), nn.AvgPool2d(kernel_size=3, stride=2, padding=1), ) self.Conv_SemanticBranch_1 = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.Upsample(scale_factor=4, mode="bilinear", align_corners=True), nn.Sigmoid() ) self.Conv_SemanticBranch_2 = nn.Sequential( depthwise_separable_conv(in_channels, out_channels, stride=1), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.Sigmoid() ) self.conv_out = nn.Sequential( nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), ) def forward(self, Detail_x, Semantic_x): DetailBranch_1 = self.Conv_DetailBranch_1(Detail_x) DetailBranch_2 = self.Conv_DetailBranch_2(Detail_x) SemanticBranch_1 = self.Conv_SemanticBranch_1(Semantic_x) SemanticBranch_2 = self.Conv_SemanticBranch_2(Semantic_x) out_1 = torch.matmul(DetailBranch_1, SemanticBranch_1) out_2 = torch.matmul(DetailBranch_2, SemanticBranch_2) out_2 = F.interpolate(out_2, scale_factor=4, mode="bilinear", align_corners=True) out = torch.matmul(out_1, out_2) out = self.conv_out(out) return outclass SegHead(nn.Module): def __init__(self, channels, num_classes): super().__init__() self.cls_seg = nn.Sequential( nn.Conv2d(channels, channels, 3, padding=1), nn.BatchNorm2d(channels), nn.ReLU(), nn.Conv2d(channels, num_classes, 1), ) def forward(self, x): return self.cls_seg(x)class BiSeNetV2(nn.Module): def __init__(self,in_channels=3, detail_channels=(64, 64, 128), semantic_channels=(16, 32, 64, 128), semantic_expansion_ratio=6, aggregation_channels=128, out_indices=(0, 1, 2, 3, 4), num_classes = 3): super(BiSeNetV2, self).__init__() self.in_channels = in_channels self.detail_channels = detail_channels self.semantic_expansion_ratio = semantic_expansion_ratio self.semantic_channels = semantic_channels self.aggregation_channels = aggregation_channels self.out_indices = out_indices self.num_classes = num_classes self.detail = DetailBranch(detail_channels=self.detail_channels, in_channels=self.in_channels) self.semantic = SemanticBranch(semantic_channels=self.semantic_channels, in_channels=self.in_channels,exp_ratio=self.semantic_expansion_ratio) self.AggregationLayer = AggregationLayer(in_channels=self.aggregation_channels, out_channels=self.aggregation_channels) self.seg_head_aggre = SegHead(semantic_channels[-1], self.num_classes) self.seg_heads = nn.ModuleList() self.seg_heads.append(self.seg_head_aggre) for channel in semantic_channels: self.seg_heads.append(SegHead(channel, self.num_classes)) def forward(self, x): _, _, h, w = x.size() x_detail = self.detail(x) x_semantic_lst = self.semantic(x) x_head = self.AggregationLayer(x_detail, x_semantic_lst[-1]) outs = [x_head] + x_semantic_lst[:-1] outs = [outs[i] for i in self.out_indices] out = tuple(outs) seg_out = [] for index, stage in enumerate(self.seg_heads): seg_out.append(F.interpolate(stage(out[index]),size=(h,w), mode="bilinear", align_corners=True)) return seg_outCamvid dataset# 导入库import osos.environ['CUDA_VISIBLE_DEVICES'] = '0'os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"import torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch.utils.data import DataLoaderimport warningswarnings.filterwarnings("ignore")from PIL import Imageimport numpy as npimport albumentations as Afrom albumentations.pytorch.transforms import ToTensorV2torch.manual_seed(17)# 自定义数据集CamVidDatasetclass CamVidDataset(torch.utils.data.Dataset): """CamVid Dataset. Read images, apply augmentation and preprocessing transformations. Args: images_dir (str): path to images folder masks_dir (str): path to segmentation masks folder class_values (list): values of classes to extract from segmentation mask augmentation (albumentations.Compose): data transfromation pipeline (e.g. flip, scale, etc.) preprocessing (albumentations.Compose): data preprocessing (e.g. noralization, shape manipulation, etc.) """ def __init__(self, images_dir, masks_dir): self.transform = A.Compose([ A.Resize(448, 448), A.HorizontalFlip(), A.VerticalFlip(), A.Normalize(), ToTensorV2(), ]) self.ids = os.listdir(images_dir) self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids] self.masks_fps = [os.path.join(masks_dir, image_id) for image_id in self.ids] def __getitem__(self, i): # read data image = np.array(Image.open(self.images_fps[i]).convert('RGB')) mask = np.array( Image.open(self.masks_fps[i]).convert('RGB')) image = self.transform(image=image,mask=mask) return image['image'], image['mask'][:,:,0] def __len__(self): return len(self.ids)# 设置数据集路径DATA_DIR = r'database/camvid/camvid/' # 根据自己的路径来设置x_train_dir = os.path.join(DATA_DIR, 'train_images')y_train_dir = os.path.join(DATA_DIR, 'train_labels')x_valid_dir = os.path.join(DATA_DIR, 'valid_images')y_valid_dir = os.path.join(DATA_DIR, 'valid_labels')train_dataset = CamVidDataset( x_train_dir, y_train_dir, )val_dataset = CamVidDataset( x_valid_dir, y_valid_dir, )train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True,drop_last=True)val_loader = DataLoader(val_dataset, batch_size=16, shuffle=True,drop_last=True)Trainmodel = BiSeNetV2(num_classes=33)from d2l import torch as d2lfrom tqdm import tqdmimport pandas as pdimport monai# training loop 100 epochsepochs_num = 100# 选用SGD优化器来训练optimizer = torch.optim.SGD(model.parameters(), lr=0.1)schedule = monai.optimizers.LinearLR(optimizer, end_lr=0.05, num_iter=int(epochs_num*0.75))# 损失函数选用多分类交叉熵损失函数lossf = nn.CrossEntropyLoss(ignore_index=255)def evaluate_accuracy_gpu(net, data_iter, device=None): if isinstance(net, nn.Module): net.eval() # Set the model to evaluation mode if not device: device = next(iter(net.parameters())).device # No. of correct predictions, no. of predictions metric = d2l.Accumulator(2) with torch.no_grad(): for X, y in data_iter: if isinstance(X, list): # Required for BERT Fine-tuning (to be covered later) X = [x.to(device) for x in X] else: X = X.to(device) y = y.to(device) output = net(X) pred = output[0] metric.add(d2l.accuracy(pred, y), d2l.size(y)) return metric[0] / metric[1]# 训练函数def train_ch13(net, train_iter, test_iter, loss, optimizer, num_epochs, schedule, swa_start=swa_start, devices=d2l.try_all_gpus()): timer, num_batches = d2l.Timer(), len(train_iter) animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1], legend=['train loss', 'train acc', 'test acc']) net = nn.DataParallel(net, device_ids=devices).to(devices[0]) # 用来保存一些训练参数 loss_list = [] train_acc_list = [] test_acc_list = [] epochs_list = [] time_list = [] lr_list = [] for epoch in range(num_epochs): # Sum of training loss, sum of training accuracy, no. of examples, # no. of predictions metric = d2l.Accumulator(4) for i, (X, labels) in enumerate(train_iter): timer.start() if isinstance(X, list): X = [x.to(devices[0]) for x in X] else: X = X.to(devices[0]) gt = labels.long().to(devices[0]) net.train() optimizer.zero_grad() result = net(X) pred = result[0] seg_loss = loss(result[0], gt) aux_loss_1 = loss(result[1], gt) aux_loss_2 = loss(result[2], gt) aux_loss_3 = loss(result[3], gt) aux_loss_4 = loss(result[4], gt) loss_sum = seg_loss + 0.2*aux_loss_1 + 0.2*aux_loss_2 + 0.2*aux_loss_3 + 0.2*aux_loss_4 l = loss_sum loss_sum.sum().backward() optimizer.step() acc = d2l.accuracy(pred, gt) metric.add(l, acc, labels.shape[0], labels.numel()) timer.stop() if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1: animator.add(epoch + (i + 1) / num_batches,(metric[0] / metric[2], metric[1] / metric[3], None)) if optimizer.state_dict()['param_groups'][0]['lr']>0.05: schedule.step() test_acc = evaluate_accuracy_gpu(net, test_iter) animator.add(epoch + 1, (None, None, test_acc)) print(f"epoch {epoch+1}/{epochs_num} --- loss {metric[0] / metric[2]:.3f} --- train acc {metric[1] / metric[3]:.3f} --- test acc {test_acc:.3f} --- lr {optimizer.state_dict()['param_groups'][0]['lr']} --- cost time {timer.sum()}") #---------保存训练数据--------------- df = pd.DataFrame() loss_list.append(metric[0] / metric[2]) train_acc_list.append(metric[1] / metric[3]) test_acc_list.append(test_acc) epochs_list.append(epoch+1) time_list.append(timer.sum()) lr_list.append(optimizer.state_dict()['param_groups'][0]['lr']) df['epoch'] = epochs_list df['loss'] = loss_list df['train_acc'] = train_acc_list df['test_acc'] = test_acc_list df["lr"] = lr_list df['time'] = time_list df.to_excel("savefile/BiseNetv2_camvid.xlsx") #----------------保存模型------------------- if np.mod(epoch+1, 5) == 0: torch.save(net.state_dict(), f'checkpoints/BiseNetv2_{epoch+1}.pth') # 保存下最后的model torch.save(net.state_dict(), f'checkpoints/BiseNetv2_last.pth')train_ch13(model, train_loader, val_loader, lossf, optimizer, epochs_num, schedule=schedule)Result

本文链接地址:https://www.jiuchutong.com/zhishi/299519.html 转载请保留说明!

上一篇:「Vue面试题」在项目中你是如何解决跨域的?(vue的常见面试题)

下一篇:GPU版本安装Pytorch教程最新方法(gpu版本的pytorch)

  • 搞懂这五种活动分类,让效果事半功倍(搞懂这五种活动的意义)

    搞懂这五种活动分类,让效果事半功倍(搞懂这五种活动的意义)

  • 水货和行货是什么意思(水货和行货区别)(水货和行货的质量一样吗)

    水货和行货是什么意思(水货和行货区别)(水货和行货的质量一样吗)

  • word文档页边距在哪里设置(word文档页边距标准数值)

    word文档页边距在哪里设置(word文档页边距标准数值)

  • 微信5000好友如何一次性群发(微信五千多好友)

    微信5000好友如何一次性群发(微信五千多好友)

  • 苹果12港版和国行有什么区别(苹果12港版和国行一样吗)

    苹果12港版和国行有什么区别(苹果12港版和国行一样吗)

  • word如何插图进去(如何在word上插图)

    word如何插图进去(如何在word上插图)

  • 华为抬头唤醒在哪儿(华为手机 抬头呼唤 怎么设置)

    华为抬头唤醒在哪儿(华为手机 抬头呼唤 怎么设置)

  • 离基站多少米安全(离基站多远信号最好)

    离基站多少米安全(离基站多远信号最好)

  • 付费音乐包可以听vip歌曲吗(付费音乐包可以赠送吗)

    付费音乐包可以听vip歌曲吗(付费音乐包可以赠送吗)

  • 手机屏幕上有划痕怎么修复(手机屏幕上有划痕能修复吗)

    手机屏幕上有划痕怎么修复(手机屏幕上有划痕能修复吗)

  • 企业微信为啥发不了视频(企业微信为啥发不了专属红包)

    企业微信为啥发不了视频(企业微信为啥发不了专属红包)

  • 工作站笔记本和普通笔记本有什么区别(工作站笔记本和高配笔记本区别)

    工作站笔记本和普通笔记本有什么区别(工作站笔记本和高配笔记本区别)

  • 计算机按照用途可分为(计算机按照用途可以分为)

    计算机按照用途可分为(计算机按照用途可以分为)

  • 默认地址是什么意思(qq邮箱怎么修改默认地址是什么)

    默认地址是什么意思(qq邮箱怎么修改默认地址是什么)

  • 快手运营人员是干嘛的(快手运营岗)

    快手运营人员是干嘛的(快手运营岗)

  • 360路由器用户名是什么(360路由器用户名密码错误)

    360路由器用户名是什么(360路由器用户名密码错误)

  • 苹果7卡顿怎么解决(苹果7卡顿怎么清理)

    苹果7卡顿怎么解决(苹果7卡顿怎么清理)

  • 目前web安全主要分为(目前web安全主要分为以下哪几个方面)

    目前web安全主要分为(目前web安全主要分为以下哪几个方面)

  • 携程套餐怎么取消(携程购买套餐)

    携程套餐怎么取消(携程购买套餐)

  • 复兴号wifi怎么连(复兴号上的wifi怎么连接)

    复兴号wifi怎么连(复兴号上的wifi怎么连接)

  • 苹果的otg开关在哪

    苹果的otg开关在哪

  • vivoz3有没有指纹识别(vivoz3指纹在哪)

    vivoz3有没有指纹识别(vivoz3指纹在哪)

  • nova5pro和nova5区别(nova5ipro和nova5的区别)

    nova5pro和nova5区别(nova5ipro和nova5的区别)

  • xr关后台的方法

    xr关后台的方法

  • QQ如何绑定闺蜜情侣基友关系(qq如何绑定闺蜜关系账号)

    QQ如何绑定闺蜜情侣基友关系(qq如何绑定闺蜜关系账号)

  • 华为海思跟华为关系(海思芯片和华为芯片)

    华为海思跟华为关系(海思芯片和华为芯片)

  • puk码解锁方法(荣耀puk码解锁方法)

    puk码解锁方法(荣耀puk码解锁方法)

  • 开淘宝保证金怎么交(淘宝开店的保证金怎么取出来)

    开淘宝保证金怎么交(淘宝开店的保证金怎么取出来)

  • 汽车增值税是企业交给国家的税
  • 印花税的缴纳方法包括哪几种
  • 合同印花税怎么贴
  • 吸收合并需要编制报表吗
  • 社保税局代缴
  • 个人房贷利息抵税
  • 季度30万免增值税2019
  • 新会计准则固定资产报废账务处理
  • 民非组织捐赠收入免税
  • 已贴花的凭证凡修改后所载金额增加的部分应补贴印花
  • 负数发票作废了对原来的正数发票有什么影响
  • 建筑工地的零星补单是指什么意思
  • 健身房开业前买的瑜伽垫怎么做账?
  • 私车公用税务政策性文件
  • 个人持有原始股要交税吗
  • 企业交的社保是什么
  • 居民企业清算企业所得税
  • 简易计税开票开成了一般计税的税率会比对不通过吗
  • 商品超出几倍合法
  • 返利计提分录
  • 核定征收和查账征收,交的税一样吗
  • edge浏览器下载安装
  • 鸿蒙负一屏怎么设置
  • 预付账款是企业销售过程中形成的一种非货币形式的债权
  • 房地产开发企业资质证书
  • 月末计提固定资产折旧时,应借记
  • 房屋的押金费用怎么算
  • macos怎么看
  • 尼泊尔乡村
  • 保险公司经营外汇保险业务
  • 个人从事生产经营
  • 债权转让抵押权一并转让,需要办理抵押变更手续
  • 印花税具体包括哪几类
  • 锡特f8
  • 成功解决冲突的能力英语
  • 餐饮手撕票在哪里买多少钱
  • js面试2021
  • IndexError: invalid index of a 0-dim tensor. Use `tensor.item()` in Python
  • 收到工程款怎么做凭证
  • look 查明
  • 年检车辆检测费
  • 公司股票买卖账务处理
  • 沙箱支付宝app正式版
  • 税种分类及其税率
  • dict在python中的作用
  • 增值税比对票表不通过
  • 一次性开票分期确认收入如何纳税申报
  • 房地产拆迁补偿协议
  • 小微企业的税收优惠政策2023
  • 个税算错怎么办理退税
  • 承兑汇票大回头是啥意思
  • 增值税防伪税控系统
  • 申报残保金的时候有处罚决定书怎么办
  • 疫情期间水电费补贴收入申报企业所得税吗
  • 微信转账没有显示对方的名字怎么办
  • 加油站汽油损耗分析
  • 进项税额转出最终应转到哪里
  • 申报系统中印花税报表怎么填
  • 商业承兑汇票如何开具
  • 软件测试取费标准
  • 小微企业免征增值税优惠
  • mysql与sqlyog
  • Linux系统下mysqlcheck修复数据库命令(详解)
  • windows pe无法启动怎么办
  • 注册表的命令
  • rpm命令的作用是什么
  • win10 oem key
  • 手机上的安全模式是什么
  • Win7系统怎么打开设置
  • linux升级内核要重启吗
  • perl uc,lc,ucfirst,lcfirst大小写转换函数
  • 关于植物的现代诗
  • linux执行sh文件报错找不到
  • cmd进入控制面板代码
  • pycharm怎么学
  • Node.js中的事件循环是什么
  • socket restful
  • Android屏幕适配分屏
  • 办完营业执照多久可以开抖音小店
  • 增值税专用发票电子版
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设