位置: IT常识 - 正文

机器学习中的数学原理——模型评估与交叉验证

编辑:rootadmin
机器学习中的数学原理——模型评估与交叉验证

推荐整理分享机器学习中的数学原理——模型评估与交叉验证,希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!

惭愧惭愧!机器学习中的数学原理这个专栏已经很久没有更新了!前段时间一直在学习深度学习,paddlepaddle,刷题专栏跟新了,这个专栏就被打入冷宫了。这个专栏名为白话机器学习中数学学习笔记,主要是用来分享一下我在 机器学习中的学习笔记及一些感悟,也希望对你的学习有帮助哦!感兴趣的小伙伴欢迎私信或者评论区留言!这一篇就更新一下《 白话机器学习中的数学——模型评估与交叉验证》!

文章目录一、什么是模型评估二、交叉验证2.1回归问题的交叉验证2.2分类问题的验证一、什么是模型评估

简单的讲,模型评估就是评估训练好的模型的好坏。

在进行回归和分类时,为了进行预测,我们定义了函数 fθ(x),然后根据训练数据求出了函数的参数 θ。也就是对目标函数进行微分,然后求出参数更新表达式的操作,当时我们求出参数更新表达式之后就结束了。 但是,其实我们真正想要的是通过预测函数得到预测值。以回归的那个例子来说,就是关于投入的广告费能带来多少点击量的预测值。所以我们希望 fθ(x)对未知数据 x 输出的预测值尽可能正确。那我们如何测量预测函数 fθ(x)的正确性,也就是精度呢?对于一个变量的问题,我可以用图直观的表示出来:

像多重回归这样的问题,变量增加后就不能在图上展示了,而且特意去画图也很麻烦。所以我们需要能够定量地表示机器学习模型的精度。接下来我们就要考虑评估模型的方法。

二、交叉验证

验证是指的在机器学习模型训练时对模型好坏程度的衡量。交叉验证就是一种常用的模型选择方法,使用部分数据集进行验证模型的有效性。

2.1回归问题的交叉验证

把获取的全部训练数据分成两份:一份用于测试,一份用于训练。然后用前者来评估模型。也就是说假如有 10 个训练数据,那么实际上会按照 5 个测试数据、5 个训练数据来分配它们,但是比起 5 : 5,大多数情况会采用 3 : 7 或者 2 : 8 这种训练数据更多的比例。 我们接下来用3 个用于测试、7 个用于训练。也就是说,关于点击量预测的回归问题,我们现在有 10 个数据,其中测试数据和训练数据是这样分配的:

机器学习中的数学原理——模型评估与交叉验证

右侧的 3 个是测试数据、左侧的 7 个是训练数据。首先,我们来考虑使用左侧这 7 个数据来训练参数的情况。用一次函数

fθ(x)=θ+θ1x∗f_{\boldsymbol{\theta}}(\boldsymbol{x})=\theta_0+\theta_1 x^*fθ​(x)=θ0​+θ1​x∗表示即可。先从一次函数开始考虑比较好。先不去管测试数据,只看那7个训练数据。一次拟合函数大概如下:

再考虑二次函数:

如果 fθ(x)是二次函数,那它基本上就是这个形状。但是这个函数“只有对训练数据才是正确的”,对于测试集的预测效果很差。也就是说如果只看训练数据,那么二次函数比一次函数拟合得更好。

但是,如果将测试数据也考虑进来,那么二次函数就完全不行了。要把测试数据当作未知数据来考虑。即使模型相同,如果训练数据过少,这种现象也会发生。那么在训练结束之后,我们还得像这样检查一下测试数据是否也拟合,但是如果变量增加,就不能画图了。就算能画图,也会很麻烦。 对于回归的情况,只要在训练好的模型上计算测试数据的误差的平方,再取其平均值就可以了。假设测试数据有 n 个,那么可以这样计算。

1n∑i=1n(y(i)−fθ(x(i)))2\frac{1}{n} \sum_{i=1}^n\left(y^{(i)}-f_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)\right)^2n1​∑i=1n​(y(i)−fθ​(x(i)))2 对于预测点击量的回归问题来说,y(i) 就是点击量,而 x(i) 是广告费或广告版面的大小,这个值被称为均方误差或者 MSE,全称 Mean Square Error。这个误差越小,精度就越高,模型也就越好。

回归的目标函数也是误差函数,这与为了让误差函数的值变小而更新参数时所做的事情是一样的!

2.2分类问题的验证

与回归的时候一样,我们先考虑数据的分配。 数据的分配方法不要太极端其实会更好”这一点与回归的时候也是一样的。假设在逻辑回归的情况下,θTx 是简单的一次函数,那么只根据训练数据进行训练后,决策边界应该是这样的: 但是假如θTx 更加复杂,可能就会像这样紧贴着训练数据进行分类: 可以看到可以对训练数据完美地进行分类,却完全忽视了测试数据。对于分类有别的指标。由于回归是连续值,所以可以从误差入手,但是在分类中我们必须要考虑分类的类别是否正确。在回归中要考虑的是答案不完全一致时的误差,而分类中要考虑的是答案是否正确。 我们对图像是横向的还是纵向的进行了分类,我们是根据图像为横向的概率来分类的。关于分类是否成功就会有下面 4 种情况:

图像是横向的,被正确分类了图像被分类为横向,但实际上不是横向的图像不是横向的,被正确分类了图像被分类为非横向,但实际上是横向的

把它整理到这样的表里: 设横向的情况为正、非横向的情况为负,那么一般来说,二分类的结果可以用这张表来表示: 分类结果为正的情况是 Positive、为负的情况是 Negative。分类成功为 True、分类失败为 False。我们可以使用表里的 4 个记号来计算分类的精度。精度的英文是 Accuracy,它的计算表达式是这样的: 它表示的是在整个数据集中,被正确分类的数据 TP 和 TN 所占的比例。假如 100 个数据中 80 个被正确地分类了,那么精度就是这样的: 用测试数据来计算这个值,值越高精度越高,也就意味着模型越好!

本文链接地址:https://www.jiuchutong.com/zhishi/299735.html 转载请保留说明!

上一篇:毕业设计-基于深度学习的交通标识识别-opencv(毕业设计基于Linux系统的NFS服务器搭建)

下一篇:【自动驾驶】模型预测控制(MPC)实现轨迹跟踪(自动驾驶 模块)

  • 苹果12有指纹解锁吗(苹果12有指纹解锁和人脸识别吗)

    苹果12有指纹解锁吗(苹果12有指纹解锁和人脸识别吗)

  • 淘宝红包会自动退回的吗(淘宝红包自动续费怎样关闭)

    淘宝红包会自动退回的吗(淘宝红包自动续费怎样关闭)

  • 美团众包单子少怎么办(最近美团众包单子少)

    美团众包单子少怎么办(最近美团众包单子少)

  • 华为手机左上角hd是什么意思(华为手机左上角图标大全)

    华为手机左上角hd是什么意思(华为手机左上角图标大全)

  • nova5pro防水等级(华为nova5pro几级防水)

    nova5pro防水等级(华为nova5pro几级防水)

  • 可以在word2010表格中填入的信息是什么(在word2010中,什么可以作为表格的数据)

    可以在word2010表格中填入的信息是什么(在word2010中,什么可以作为表格的数据)

  • vivo手机抖音权限怎么设置(vivo手机抖音怎么设置私密)

    vivo手机抖音权限怎么设置(vivo手机抖音怎么设置私密)

  • 云客赞是什么平台(云客赞是干嘛的)

    云客赞是什么平台(云客赞是干嘛的)

  • 荣耀30pro+什么时候上市(荣耀30pro+什么时候上市的)

    荣耀30pro+什么时候上市(荣耀30pro+什么时候上市的)

  • 苹果耳机连安卓声音小(苹果耳机连安卓手机怎么操作)

    苹果耳机连安卓声音小(苹果耳机连安卓手机怎么操作)

  • g550cpu能干啥(g550cpu能玩什么游戏)

    g550cpu能干啥(g550cpu能玩什么游戏)

  • cad面域快捷键(cad相似选择快捷键)

    cad面域快捷键(cad相似选择快捷键)

  • 抖音被限流怎么恢复(抖音被限流怎么办可以恢复吗)

    抖音被限流怎么恢复(抖音被限流怎么办可以恢复吗)

  • jkmal0b是什么型号(jkmaloob是什么手机型号)

    jkmal0b是什么型号(jkmaloob是什么手机型号)

  • 电脑休息屏保怎么设置(电脑怎么屏保休息)

    电脑休息屏保怎么设置(电脑怎么屏保休息)

  • 华为gt2手表怎么打电话(华为gt2手表怎么设置间歇跑)

    华为gt2手表怎么打电话(华为gt2手表怎么设置间歇跑)

  • 华为mate30锁屏显示时间怎么设置(mate30e锁屏)

    华为mate30锁屏显示时间怎么设置(mate30e锁屏)

  • 华为scul10啥型号(华为slatl10手机报价)

    华为scul10啥型号(华为slatl10手机报价)

  • 手机怎么做ppt软件(手机怎么做ppt软件下载)

    手机怎么做ppt软件(手机怎么做ppt软件下载)

  • 手机掉了如何冻结手机(手机掉了如何冻结支付宝)

    手机掉了如何冻结手机(手机掉了如何冻结支付宝)

  • 华为无线充电器可以充苹果手机吗(华为无线充电器苹果手机可以用吗)

    华为无线充电器可以充苹果手机吗(华为无线充电器苹果手机可以用吗)

  • 穿越火线改名卡怎么用?(穿越火线改名卡买完了怎么用)

    穿越火线改名卡怎么用?(穿越火线改名卡买完了怎么用)

  • 教你如何手动触发蓝屏(手动滑屏怎么操作)

    教你如何手动触发蓝屏(手动滑屏怎么操作)

  • supervisord命令  配置后台服务/常驻进程的进程工具(super命令linux)

    supervisord命令 配置后台服务/常驻进程的进程工具(super命令linux)

  • 生产成本年末转入什么科目
  • 偶然所得纳税计算
  • 商誉是减值还是摊销
  • 银行电子承兑到期多久时间之内可以兑现
  • 增值税纳税申报表怎么填
  • 外地施工如何找工人
  • 小企业周转材料包括什么
  • 个人独资企业变更投资人要交税吗
  • 小规模纳税人出租
  • 优惠券抵扣账务处理流程
  • 土地出让金抵减销项税如何申报
  • 调解书和判决书执行力度一样吗
  • 企业交补充医疗保险
  • 五证一户什么意思
  • 高新技术企业所得税税率
  • 产品售后服务规定
  • 如何确定连锁店的纳税地点?
  • 个体户网上报税流程视频
  • 商业企业向供货方收取的返还收入
  • 预计负债怎么计提递延所得税资产
  • 换汇成本怎么计算
  • 企业收取的会员费当无法继续提供服务能退吗?
  • 员工租赁宿舍开几个点发票
  • 质押已至票据到期日
  • 固定资产改扩建过程中,发生的人工费用
  • vue组件相互引入
  • createsystem
  • 未入账发票可以作废吗
  • 货物无偿赠送分录
  • 挪威最北部
  • Vue3 中 createWebHistory 和 createWebHashHistory 的区别
  • python 构建
  • 损失函数解读例题
  • 命令启动服务管理
  • unistack怎么关掉
  • 套期工具会计核算
  • 帝国cms使用手册
  • 无形资产摊销是按原值吗
  • dedecms进入数据库
  • 固定资产投资额是指什么
  • sql server功能选择
  • 房地产企业购买礼品赠送客户
  • 中小企业所得税优惠
  • 软件开发的账务处理
  • 哪些凭证是有效凭证
  • 员工自动辞职有工龄工资吗
  • 4s店销售走了该找谁
  • 发票丢失了可以用复印件加盖发票章入账吗
  • 资产减值后折旧怎么算
  • 建筑业营改增后税率变化
  • 工程预算费用怎么做会计分录
  • sqlserver性能优化5种方式
  • 神州战神bios怎么进
  • 电脑windows不可用怎么办
  • 微软9月补丁
  • win10预览版选哪个
  • 如何知道文件的解压密码
  • centos 命令行
  • centos chrony
  • RHCE心得3 基于VSFTP的本地YUM源及光盘YUM源搭建步骤分享
  • win8桌面右键无法使用
  • sqlagent.exe - sqlagent是什么进程
  • 什么叫linux
  • windows窗口查看快捷键
  • linux系统文件修复命令
  • windows8桌面图标没有了
  • 非常好的成语
  • js插件大全
  • Quick cocos2dx-Lua(V3.3R1)学习笔记(8) ---- 事件篇之单点触摸事件,让我们用精灵模仿一个按钮吧
  • unity获取父节点
  • es5 教程
  • 用jQuery的AJax实现异步访问、异步加载
  • nodejs实现文件下载
  • JavaScript和HTML DOM的区别与联系及Javascript和DOM的关系
  • 个人经营所得定率征收税率表
  • 残疾人个税减免6000元
  • 税务干部转正工作总结
  • 黑龙江省国税局网站
  • 张宁年轻
  • 商标转让需要原件吗
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设