位置: IT常识 - 正文

YOLOV7改进-添加EIoU,SIoU,AlphaIoU,FocalEIoU,Wise-IoU(yolov5增加检测层)

编辑:rootadmin
YOLOV7改进-添加EIoU,SIoU,AlphaIoU,FocalEIoU,Wise-IoU 在YoloV7中添加EIoU,SIoU,AlphaIoU,FocalEIoU,Wise-IoU.

推荐整理分享YOLOV7改进-添加EIoU,SIoU,AlphaIoU,FocalEIoU,Wise-IoU(yolov5增加检测层),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:yolov3改进算法,yolov3改进算法,yolov4增加检测层,yolov5改进bifpn,yolov5改进bifpn,yolov2改进,yolov4如何改进,yolov4如何改进,内容如对您有帮助,希望把文章链接给更多的朋友!

YOLOV7改进-添加EIoU,SIoU,AlphaIoU,FocalEIoU,Wise-IoU(yolov5增加检测层)

yolov7中box_iou其默认用的是CIoU,其中代码还带有GIoU,DIoU, AlphaIoU,文件路径:utils/general.py,函数名为:bbox_iou

重磅!!!!! YOLO模型改进集合指南-CSDNdef bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7): # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 box2 = box2.T # Get the coordinates of bounding boxes if x1y1x2y2: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] else: # transform from xywh to xyxy b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 # Intersection area inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) # Union Area w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps union = w1 * h1 + w2 * h2 - inter + eps iou = inter / union if GIoU or DIoU or CIoU: cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared if DIoU: return iou - rho2 / c2 # DIoU elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / (h2 + eps)) - torch.atan(w1 / (h1 + eps)), 2) with torch.no_grad(): alpha = v / (v - iou + (1 + eps)) return iou - (rho2 / c2 + v * alpha) # CIoU else: # GIoU https://arxiv.org/pdf/1902.09630.pdf c_area = cw * ch + eps # convex area return iou - (c_area - union) / c_area # GIoU else: return iou # IoU

我们可以看到函数顶部,有GIoU,DIoU,CIoU的bool参数可以选择,如果全部为False的时候,其会返回最普通的Iou,如果其中一个为True的时候,即返回设定为True的那个Iou。

那么重点来了,我们怎么在这个函数里面添加EIoU,SIoU,AlphaIoU,FocalEIoU呢?

我们只需要把上面提及到的这个函数替换成以下,代码出自:github链接,这个github上还有一些yolov5的改进源码和一些常用的脚本,有兴趣可以去看看,请各位也帮忙点个star支持下,谢谢!

def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, Focal=False, alpha=1, gamma=0.5, eps=1e-7): # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 box2 = box2.T # Get the coordinates of bounding boxes if x1y1x2y2: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] else: # transform from xywh to xyxy b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 # Intersection area inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) # Union Area w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps union = w1 * h1 + w2 * h2 - inter + eps # IoU # iou = inter / union # ori iou iou = torch.pow(inter/(union + eps), alpha) # alpha iou if CIoU or DIoU or GIoU or EIoU or SIoU: cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height if CIoU or DIoU or EIoU or SIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 c2 = (cw ** 2 + ch ** 2) ** alpha + eps # convex diagonal squared rho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha # center dist ** 2 if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2) with torch.no_grad(): alpha_ciou = v / (v - iou + (1 + eps)) if Focal: return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter/(union + eps), gamma) # Focal_CIoU else: return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)) # CIoU elif EIoU: rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2 rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2 cw2 = torch.pow(cw ** 2 + eps, alpha) ch2 = torch.pow(ch ** 2 + eps, alpha) if Focal: return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter/(union + eps), gamma) # Focal_EIou else: return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # EIou elif SIoU: # SIoU Loss https://arxiv.org/pdf/2205.12740.pdf s_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + eps s_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + eps sigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5) sin_alpha_1 = torch.abs(s_cw) / sigma sin_alpha_2 = torch.abs(s_ch) / sigma threshold = pow(2, 0.5) / 2 sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1) angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2) rho_x = (s_cw / cw) ** 2 rho_y = (s_ch / ch) ** 2 gamma = angle_cost - 2 distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y) omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2) omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2) shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4) if Focal: return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter/(union + eps), gamma) # Focal_SIou else: return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha) # SIou if Focal: return iou - rho2 / c2, torch.pow(inter/(union + eps), gamma) # Focal_DIoU else: return iou - rho2 / c2 # DIoU c_area = cw * ch + eps # convex area if Focal: return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter/(union + eps), gamma) # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdf else: return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU https://arxiv.org/pdf/1902.09630.pdf if Focal: return iou, torch.pow(inter/(union + eps), gamma) # Focal_IoU else: return iou # IoU注意事项我认为Focal_EIoU的思想是可以用作与其他IoU的变种,因此我对里面所有的IoU都支持Focal_EIoU的思想,只需要设定Focal参数为True即可,我自己测试的过程中,除了Focal_SIoU出现loss为inf之外,其他的都正常,不过这个不同的数据集可能出现不一样,具体可以自行测试下。gamma参数是Focal_EIoU中的gamma参数,一般就是为0.5,有需要可以自行更改。alpha参数为AlphaIoU中的alpha参数,默认为1,1的意思就是跟正常的IoU一样,如果想采用AlphaIoU的话,论文alpha默认值为3。(比如我不想使用AlphaIoU的特性,我就把alpha设置为1就可以,如果我想使用AlphaIoU的特性,我可以设置alpha为3)。跟Focal_EIoU一样,我认为AlphaIoU的思想同样可以用在其他的IoU变种上,简单来说就是如果你设置了alpha为3,其他IoU设定的参数(GIoU,DIoU,CIoU,EIoU,SIoU)为False的时候,那就是AlphaIoU,如果你设置了alpha为3,CIoU为True的时候,那就是AlphaCIoU,效果的话就因数据集和模型而已,具体可以自行测试下。想用那个IoU变种,就直接设置参数为True即可。AlphaIoU理论上与Focal_EIoU没有直接的冲突,但是作者这边没有详细测试过,这两者一起用会是什么效果,有兴趣可以自行测试下。除了以上这个函数替换,还需要在utils/loss.py中ComputeLoss Class中的__call__和ComputeLossOTA Class中的__call__函数中修改一下:

原本的__call__函数如下: 主要对上述两个红框部分替换为以下代码:

if type(iou) is tuple: lbox += (iou[1].detach() * (1 - iou[0])).mean() iou = iou[0]else: lbox += (1.0 - iou).mean() # iou loss原因是因为yolov7中的yaml配置文件有一个loss_ota的参数会选择采用哪一个Loss(ComputeLoss,ComputeLossOTA),为了避免有一个不记得修改,就两个都一起修改即可。

最后修改参数就在调用bbox_iou中进行修改即可,比如上面的代码就是使用了CIoU,如果你想使用Focal_EIoU那么你可以修改为下:iou = bbox_iou(pbox.T, selected_tbox, x1y1x2y2=False, EIoU=True, Focal=True)最后希望这篇文章可以帮助到大家。博文求点赞,github求star,谢谢啦!
本文链接地址:https://www.jiuchutong.com/zhishi/299754.html 转载请保留说明!

上一篇:Web自动化测试怎么做?Web自动化测试的详细流程和步骤(web 自动化测试)

下一篇:反射填充详解ReflectionPad2d(padding)(反射dll)

  • 小规模纳税人一般纳税人区别
  • 车辆购置税是什么税种
  • 印花税票是什么税种
  • 软件无形资产摊销年限是多久
  • 没有支付运费会怎样
  • 个税是每个月都扣吗
  • 上期留抵税额会计分录
  • 公司给员工租的宿舍怎么交税
  • 离职补偿金入账
  • 固定资产投资会计处理
  • 农产品进项抵扣政策
  • 税务局代开的进项票需要认证吗
  • 银行承兑汇票到期日期怎么算
  • 销项抵扣需要缴纳城建税吗
  • 外购固定资产账务处理
  • 转账支票支付展览费
  • 水利印花税计算公式
  • 银行卡收单机构外包业务管理指引
  • 扣个税必须要交社保吗
  • 不同项目之间进项税能否抵扣?
  • 附税分录怎么做?
  • 小规模纳税人和小微企业区别
  • 小微企业减半征收印花税代码
  • 残保金和工会经费需要计提吗
  • 本期免税收入是什么
  • 结构化存款是什么
  • 小型微利企业普惠性税收减免政策执行期限
  • 存货跌价准备用账面余额还是账面价值
  • 滴滴电子发票怎么填写
  • 漏记的账务怎么处理
  • mac的键盘怎么打开
  • 电脑屏幕保护不能设置
  • 华为分享连接电脑显示检查您的拼写
  • 企业开办费的会计分录
  • 哪些情况下可以终止心肺复苏
  • thinkphp5开发教程
  • 分公司 股东
  • 呆账核销的条件有哪些
  • PHP:Memcached::getMulti()的用法_Memcached类
  • 银行手续费未开票汇算清缴要调增吗
  • 西西弗书店主管级
  • 季度缴纳企业所得税计算方法
  • java 通配符
  • 帝国cms模板文件在哪
  • 计提短期借款利息会计分录怎么写
  • 培训机构先收费后付费
  • 转出未交增值税会计处理
  • 固定资产折旧如何进行会计处理
  • 罚款记入其他应收款科目
  • 阿里云主机安装软件
  • 长期股权投资处置损失计入什么科目
  • 综合保税区可以随便进出吗
  • 一般纳税人跨年冲红报年度所得税怎么做
  • 多计提的折旧费怎么做账
  • 差旅费超出部分
  • 商业会计主要做什么
  • 卖二手车怎么做账务处理
  • 以公允价值计量的金融资产
  • 中标服务费计入合同取得成本
  • sql导入csv数据
  • 让Windows Server 2008系统安全更上一层楼
  • centos关闭kdump
  • u盘制作winpe启动盘
  • win8怎么调整显示器亮度
  • macos终端命令
  • 如何把旧mac上的所有内容迁移到新mac上
  • vsftpd 虚拟用户权限
  • [置顶]JM259194
  • cocos 2d x
  • javascript table
  • unity2d shader
  • 怎么连接w乚an
  • ui课程入门
  • JQuery 设置checkbox值二次无效的解决方法
  • ajax实现无刷新
  • 云南国家税务局官网登录入口
  • 湖南税务局发票查询
  • 车辆购置税可以抵税吗
  • 北京市地方税务局
  • 定额发票怎么入账
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设