位置: IT常识 - 正文

反射填充详解ReflectionPad2d(padding)(反射dll)

编辑:rootadmin
反射填充详解ReflectionPad2d(padding) ReflectionPad一、反射填充1、一维反射填充1)调用方式2)实例(1)padding为整数(2)padding为2元组2、二维反射填充1)调用方式2)实例(1)padding为整数(1)padding为4元组一、反射填充

推荐整理分享反射填充详解ReflectionPad2d(padding)(反射dll),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:反射效果msaa,反射dll,反射reflection,反射final,反射reflection,反射reflection,反射效果msaa,反射效果什么意思,内容如对您有帮助,希望把文章链接给更多的朋友!

这种填充方式是以输入向量的边界为对称轴,以设定的padding大小为步长,将输入向量的边界内padding大小的元素,对称填充。设定padding时主要注意,padding必须小于向量所在维度的大小。

1、一维反射填充1)调用方式输入形状为(N,C,W_IN)或(C,W_IN);输出形状为(N,C,W_out)或(C,W_out);padding表示填充尺寸,可为整数或者2元组;padding为整数时,输入向量左右填充相同的大小;而padding为元组时可自定义向量左右分别填充多少;torch.nn.ReflectionPad1d(padding)2)实例

对于一维填充来说,其输入为N个宽度为W的向量,而每个元素对应有C个通道。此方式填充只针对他的宽度进行,填充点分别为向量左边和右边两个边界。不同的padding类型(整数或元组),决定了左右两边如何填充的方式。

(1)padding为整数inp=torch.tensor([[[2., 3., 9., 1., 5.], [6., 4., 0., 5., 0.]]])print(inp.shape)print("inp:",inp)pad=1out=nn.ReflectionPad1d(padding=pad)(inp)print("padding={},out:".format(pad),out)print(out.shape)

结果分析(绿线代表以此为轴,红色代表填充的元素): 1)当padding=1时,表示向量左右两边均以边界为对称轴,填充宽度为1的元素。

torch.Size([1, 2, 5])inp: tensor([[[2., 3., 9., 1., 5.], [6., 4., 0., 5., 0.]]])padding=1,out: tensor([[[3., 2., 3., 9., 1., 5., 1.], [4., 6., 4., 0., 5., 0., 5.]]])torch.Size([1, 2, 7])

2)当padding=2时,表示向量左右两边均以边界为对称轴,填充宽度为2的元素。

反射填充详解ReflectionPad2d(padding)(反射dll)

torch.Size([1, 2, 5])inp: tensor([[[2., 3., 9., 1., 5.], [6., 4., 0., 5., 0.]]])padding=2,out: tensor([[[9., 3., 2., 3., 9., 1., 5., 1., 9.], [0., 4., 6., 4., 0., 5., 0., 5., 0.]]])torch.Size([1, 2, 9])(2)padding为2元组inp=torch.tensor([[[2., 3., 9., 1., 5.], [6., 4., 0., 5., 0.]]])print(inp.shape)print("inp:",inp)pad=(1,2)out=nn.ReflectionPad1d(padding=pad)(inp)print("padding={},out:".format(pad),out)print(out.shape)

结果分析: 1)当padding=(1,2)时,表示向量以边界为对称轴,左右两边分别填充宽度为1、2的元素。

torch.Size([1, 2, 5])inp: tensor([[[2., 3., 9., 1., 5.], [6., 4., 0., 5., 0.]]])padding=(1, 2),out: tensor([[[3., 2., 3., 9., 1., 5., 1., 9.], [4., 6., 4., 0., 5., 0., 5., 0.]]])torch.Size([1, 2, 8])

2、二维反射填充1)调用方式输入形状为(N,C,H_in,W_IN)或(C,H_in,W_IN);输出形状为(N,C,H_out,W_out)或(C,H_out,W_out);padding表示填充尺寸,可为整数或者4元组;padding为整数时,输入向量左右上下填充相同的大小;而padding为元组时可自定义向量左右上下分别填充多少;torch.nn.ReflectionPad2d(padding)2)实例

对于二维填充来说,其输入为N个宽度为H*W的数组,而每个元素对应有C个通道。此方式填充针对他的高度和宽度进行,填充点分别为上、下、左、右四个边界。不同的padding类型(整数或元组),决定了四个边界如何填充的方式。

(1)padding为整数inp=torch.tensor([[[[8., 3., 6., 2., 7.], [0., 8., 4., 9., 3.]], [[3., 9., 6., 2., 7.], [7., 8., 4., 6., 2.]], [[1., 9., 0., 1., 4.], [7., 8., 1., 0., 3.]]]])print(inp.shape)print("inp:",inp)pad=1out=nn.ReflectionPad2d(padding=pad)(inp)print("padding={},out:".format(pad),out)print(out.shape)

结果分析(图中白线、黑线代表以此为轴,红色、绿色块代表填充元素): 1)当padding=1时,表示向量以边界为对称轴,左、右、上、下四个边界均填充宽度为1的元素。 填充按照左、右、上、下的顺序依次填充。

padding=1,out: tensor([[[[8., 0., 8., 4., 9., 3., 9.], [3., 8., 3., 6., 2., 7., 2.], [8., 0., 8., 4., 9., 3., 9.], [3., 8., 3., 6., 2., 7., 2.]], [[8., 7., 8., 4., 6., 2., 6.], [9., 3., 9., 6., 2., 7., 2.], [8., 7., 8., 4., 6., 2., 6.], [9., 3., 9., 6., 2., 7., 2.]], [[8., 7., 8., 1., 0., 3., 0.], [9., 1., 9., 0., 1., 4., 1.], [8., 7., 8., 1., 0., 3., 0.], [9., 1., 9., 0., 1., 4., 1.]]]])torch.Size([1, 3, 4, 7])

(1)padding为4元组inp=torch.tensor([[[[8., 3., 6., 2., 7.], [0., 8., 4., 9., 3.]], [[3., 9., 6., 2., 7.], [7., 8., 4., 6., 2.]], [[1., 9., 0., 1., 4.], [7., 8., 1., 0., 3.]]]])pad=(2,2,1,1)out=nn.ReflectionPad2d(padding=pad)(inp)print("padding={},out:".format(pad),out)print(out.shape)

结果分析: 1)当padding=(2,2,1,1)时,表示向量以左、右、上、下边界为对称轴,左、右、上、下分别填充宽度为2,2,1,1的元素。

padding=(2, 2, 1, 1),out: tensor([[[[4., 8., 0., 8., 4., 9., 3., 9., 4.], [6., 3., 8., 3., 6., 2., 7., 2., 6.], [4., 8., 0., 8., 4., 9., 3., 9., 4.], [6., 3., 8., 3., 6., 2., 7., 2., 6.]], [[4., 8., 7., 8., 4., 6., 2., 6., 4.], [6., 9., 3., 9., 6., 2., 7., 2., 6.], [4., 8., 7., 8., 4., 6., 2., 6., 4.], [6., 9., 3., 9., 6., 2., 7., 2., 6.]], [[1., 8., 7., 8., 1., 0., 3., 0., 1.], [0., 9., 1., 9., 0., 1., 4., 1., 0.], [1., 8., 7., 8., 1., 0., 3., 0., 1.], [0., 9., 1., 9., 0., 1., 4., 1., 0.]]]])torch.Size([1, 3, 4, 9])

本文链接地址:https://www.jiuchutong.com/zhishi/299755.html 转载请保留说明!

上一篇:YOLOV7改进-添加EIoU,SIoU,AlphaIoU,FocalEIoU,Wise-IoU(yolov5增加检测层)

下一篇:vue3项目中使用three.js(vue3用法)

  • 公转私做账麻烦吗
  • 水泥建材公司
  • 销售净收入咋算
  • 更换税控盘后原发票如何导入旧盘开票税局
  • 使用党费要向哪里倾斜
  • 索赔怎么开票
  • 专用发票抵扣联丢失还能抵扣吗
  • 房地产企业预缴土地增值税
  • 收到软件发票怎么做账
  • 股息交个人所得税怎么交
  • 小规模纳税人取得的专票转为一般纳税人之后能抵扣吗
  • 银行利息怎么算?
  • 会议费需要什么资料
  • 主营业务税金及附加大概比例
  • 关于增值税专用发票
  • 优先股份转让权
  • 自营方式建造固定资产成本包括增值税吗
  • 以前年度进项税少记了如何调整
  • 股票退市后股票怎么处理
  • 投资收益科目的借贷方向
  • 收据和发票的区别图片
  • 库存商品如何结转生产成本
  • php命名空间
  • mac如何在桌面显示我的电脑
  • 向政府购买土地使用权
  • php copy函数
  • 发财树叶子发黄怎样补救
  • 纳税人辅导期申报流程
  • vue中的组件有几类
  • php分页查询的简称是什么
  • 出差餐补如何做账
  • vue setstate
  • tensorflow theano
  • source命令怎么用
  • php常用加密方式
  • acpi disabled
  • 3d沙盒游戏推荐
  • 增值税系统技术维护费抵扣只能当月申报
  • 存货非正常损失的会计处理
  • 进项税没入账补入账分录
  • java string.class
  • 出售汽车固定资产要交什么税
  • python 动态
  • 床垫发票
  • 劳务报酬所得与工资薪金所得纳税的区别
  • 个体户取现金的几种方法
  • 企业合并发生的法律服务费影响利润总额吗
  • 技术服务费会计科目
  • 在创业板上市公司首次公开发行股票的条件
  • 一般纳税人适用什么会计准则
  • 2021年购买土地需要缴纳什么税
  • 材料成本差异率是什么意思
  • 个体生产经营所得税
  • 附加税的计税依据是增值税实际缴纳税款吗
  • 技术服务费收入会计分录怎么写
  • 企业发放职工薪酬的账务处理
  • 公司房屋租赁协议
  • 经营性应付项目减少对经营活动现金
  • 账簿设置方法
  • mysql安装配置教程5.7.25
  • mysql格式化日期yyyy/mm/dd
  • win7安装mysql5.5
  • Windows Server 2008之数据安全保护
  • xp系统1
  • linux查看磁盘挂载的命令
  • centos8 固态硬盘
  • ubuntu tcp
  • win11怎么关闭系统防火墙
  • win10预览版
  • windows7的显示设置在哪里
  • jquery分页组件
  • 由浅入深易,由深入浅难
  • pygame 安装
  • js快速生成数组
  • chrome调试js
  • shell脚本sudo免输密码
  • unity控制组件开关
  • javascript初学者书籍
  • 孵化企业税收优惠
  • 邳州国税局副局长
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设