位置: IT常识 - 正文
推荐整理分享在 AI 上训练 AI:ChatGPT 上训练另一种机器学习模型(ai训练流程),希望有所帮助,仅作参考,欢迎阅读内容。
文章相关热门搜索词:ai训练梗是怎么回事,ai如何训练,ai训练师的前景如何,ai训练梗是怎么回事,ai训练是属于什么岗位,ai训练梗是怎么回事,ai训练师是做什么的,ai训练梗是怎么回事,内容如对您有帮助,希望把文章链接给更多的朋友!
ChatGPT 可以像 Linux 终端一样运行,并在给出以下提示时返回执行结果。下面我来带大家操作起来。
文章目录终端操作训练机器学习模型镜像演示终端操作输入:I want you to act as a Linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. Do not write explanations. Do not type commands unless I instruct you to do so. When I need to tell you something in English, I will do so by putting text inside curly brackets {like this}. My first command is pwd
当我们给出上述提示时,ChatGPT 正确返回了执行 pwd 命令的结果。如下:
首先,我们将使用 ls 命令检查当前目录下有哪些文件。输入:ls 输出: 现在我们为这个演示创建一个示例目录。输入:mkdir sample 输出如下: 进入目录,查看当前路径。输入:cd sample; pwd 输出如下:
/home/username/sample这里查看python路径输入:which python3 输出如下:
/usr/bin/python3查看版本输入:python3 --version 输出:
Python 3.8.10训练机器学习模型这次我们将运行以下 python 脚本来使用鸢尾花数据训练决策树模型。我们可以在本地运行这个脚本,但这次我们将在 ChatGPT 的虚拟 Linux 内核上运行它。 输入:
echo 'import numpy as np\nimport pandas as pd\nfrom sklearn import datasets\nfrom sklearn.model_selection import train_test_split\nfrom sklearn import tree\nfrom sklearn.metrics import accuracy_score\n\niris = datasets.load_iris()\niris_df = pd.DataFrame(iris.data, columns=iris.feature_names)\niris_df["species"] = [iris.target_names[i] for i in iris.target]\nprint(iris_df.sample(5))\nX = iris_df.iloc[:, :4]\ny = iris.target\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1, stratify=y)\nprint("train", len(y_train))\nprint("test", len(y_test))\nclf = tree.DecisionTreeClassifier()\nclf = clf.fit(X_train, y_train)\ny_pred = clf.predict(X_test)\nprint("Accuracy: %.2f" % accuracy_score(y_test, y_pred))\nprint(y_pred)\nprint(y_test)' > sample.py上述把代码写入了一个叫做sample.py文件中,下面我们来查看一下文件内容。
输入:cat sample.py 输出:
import numpy as npimport pandas as pdfrom sklearn import datasetsfrom sklearn.model_selection import train_test_splitfrom sklearn import treefrom sklearn.metrics import accuracy_scoreiris = datasets.load_iris()iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)iris_df["species"] = [iris.target_names[i] for i in iris.target]print(iris_df.sample(5))X = iris_df.iloc[:, :4]y = iris.targetX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1, stratify=y)print("train", len(y_train))print("test", len(y_test))clf = tree.DecisionTreeClassifier()clf = clf.fit(X_train, y_train)y_pred = clf.predict(X_test)print("Accuracy: %.2f" % accuracy_score(y_test, y_pred))print(y_pred)print(y_test)现在我们执行代码,输入:python3 sample.py 输出:
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) species80 5.5 2.4 3.8 1.1 versicolor43 5.0 3.5 1.6 0.6 setosa4 5.0 3.6 1.4 0.2 setosa21 5.1 3.7 1.5 0.4 setosa16 5.4 3.9 1.3 0.4 setosatrain 120test 30Accuracy: 1.00[1 0 0 2 2 2 2 1 1 0 2 0 1 1 1 2 1 0 0 2 0 2 2 1 1 0 1 1 2 0][1 0 0 2 2 2 2 1 1 0 2 0 1 1 1 2 1 0 0 2 0 2 2 1 1 0 1 1 2 0]是的,我们成功在上面训练好了模型,并进行了评估。输入:date
输出如下:
{Current Date and Time will be shown in the format like below}Mon Mar 14 16:45:00 UTC 2023镜像演示上述操作同样可以在我搭建的镜像中进行。
仓库源码和使用教程地址:https://github.com/sfvsfv/sfvsfv.github.io镜像地址:https://sfvsfv.github.io/
上一篇:基于反事实的因果推理Causal inference based on counterfactuals--一万六千字文献详细解读(因果关系的推理应用)【全文总结】(基于反事实因果推断的度小满额度模型)
下一篇:IDEA从零到精通(24)之lombok插件的安装与使用(idea实用技巧)
友情链接: 武汉网站建设