位置: IT常识 - 正文

备战数学建模45-粒子群算法优化BP神经网络(攻坚站10)(数学建模心态崩了)

编辑:rootadmin
备战数学建模45-粒子群算法优化BP神经网络(攻坚站10)

推荐整理分享备战数学建模45-粒子群算法优化BP神经网络(攻坚站10)(数学建模心态崩了),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:数学建模的含金量有多大,数学建模数学,数学建模干货,数学建模心态崩了,数学建模0349,数学建模心态崩了,数学建模实战,备战数学建模竞赛新闻稿,内容如对您有帮助,希望把文章链接给更多的朋友!

BP神经网络主要用于预测和分类,对于大样本的数据,BP神经网络的预测效果较佳,BP神经网络包括输入层、输出层和隐含层三层,通过划分训练集和测试集可以完成模型的训练和预测,由于其简单的结构,可调整的参数多,训练算法也多,而且可操作性好,BP神经网络获得了非常广泛的应用,但是也存在着一些缺陷,例如学习收敛速度太慢、不能保证收敛到全局最小点、网络结构不易确定。另外,网络结构、初始连接权值和阈值的选择对网络训练的影响很大,但是又无法准确获得,针对这些特点可以采用遗传算法或粒子群算法等对神经网络进行优化。  

目录

一、pso+bp预测2022年勇士和凯尔特人夺冠情况

1.1、数据准备

1.2、粒子群优化BP神经网络流程图

1.3、BP神经网络和粒子群参数设置

1.4、pso+bp的完整MATLAB代码

1.5、预测结果

1.6、小结


一、pso+bp预测2022年勇士和凯尔特人夺冠情况1.1、数据准备

训练集的输入数据和输出数据,如下一共36*14的数据,前面18行是勇士队的训练数据,其中前13列是输入,最后一列是输出。后面的18行是凯尔特人的训练数据,其中前13列是输入,最后一列是输出.

14列数据,一共13个输入指标和1个输出指标。

输入指标:

1.季后赛球队场均投篮命中率  2.季后赛球队场均3分命中率 3.季后赛球队场均罚篮命中率  4.季后赛球队场均得分 5.季后赛球队场均篮板    6.季后赛球队场均助攻 7.季后赛球队场均抢断    8.季后赛球队场均盖帽 9.季后赛球队场均进攻篮板率   10.季后赛球队场均防守篮板率 11.季后赛球队场均失误率    12.球星数量 13.去年是否进入总决赛

输出指标:是否夺冠

下面8*14的数据分别是勇士和凯尔特人的测试数据,前4行勇士,后四行凯尔特人。

下面2*13的数据是今年勇士和凯尔特人的季后赛数据,用于预测今年的夺冠情况。

备战数学建模45-粒子群算法优化BP神经网络(攻坚站10)(数学建模心态崩了)

1.2、粒子群优化BP神经网络流程图

我们看一下粒子群优化BP神经网路的流程图,本质上就是用粒子群算法确定BP神经网络初始的权值和阈值,适应度函数(目标函数)是BP神经网络的预测的误差,根据适应度函数,粒子群算法寻找最优的位置,进而去初始化最优的BP权值和阈值。

1.3、BP神经网络和粒子群参数设置

假设我们构建的Bp神经网络为3层网络,则Bp神经网络中需要优化的参数实际上包含4部分:输入层到隐含层的权值、隐层神经元阈值、隐含层到输出层的权值、输出层阈值。

对于粒子群的目标函数的选取,即适应度函数,我们使用BP神经网络的误差范数来衡量,在当前权值和阈值下,Bp神经网络的预测性能怎么样,这里我们使用误差范数n o r m ( T s i m − T t e s t ) 来表示,范数越小说明预测得越准确,如果范数为0,说明预测得完全准确。

对于粒子群算法,我们需要不停地更新粒子的速度和位置,选取代入适应度函数内最合适的权值和阈值,具体的速度和位置更新公式如下:

1.4、pso+bp的完整MATLAB代码

PSO+bp的代码如下:

%% 基于PSO的Bp神经网络预测2022赛季NBA总冠军clc;clear;ticclose all;%% 加载神经网络的训练样本 测试样本每列一个样本 输入P 输出Tload('basket.mat')%加载数据P = trains(:,1:end-1) ;%训练集输入T = trains(:,end) ;%训练集输出P_test = tests(:,1:end-1) ;%测试集输入T_test = tests(:,end) ;%测试集输出cur_season = pred ;%待预测的数据,今年NBA季后赛数据,第1行为勇士队数据,第2行为凯尔特人队数据inputnum=size(P,2); %输入层神经元个数hiddennum=2*inputnum+1; %初始隐层神经元个数outputnum=size(T,2); %输出层神经元个数w1num=inputnum*hiddennum; %输入层到隐层的权值个数w2num=outputnum*hiddennum; %隐层到输出层的权值个数N=w1num+hiddennum+w2num+outputnum; %待优化的变量的个数%% 定义粒子群优化算法参数nVar=N; %变量数目VarSize=[1,nVar]; %变量矩阵大小VarMin=-0.5; %变量取值下限VarMax=0.5; %变量取值上限MaxIt=200; %最大迭代次数nPop=40; %种群数目w=1; %惯性权重wdamp=0.99; %惯性重量降低系数c1=1.5; %个体学习系数c2=2.0; %群体学习系数VelMax=0.1*(VarMax-VarMin); %速度上限VelMin=-VelMax; %速度下限%% 初始化empty_particle.Position=[];empty_particle.Cost=[];empty_particle.Velocity=[];empty_particle.Best.Position=[];empty_particle.Best.Cost=[];particle=repmat(empty_particle,nPop,1);GlobalBest.Cost=inf;for i=1:nPop %初始化位置 particle(i).Position=unifrnd(VarMin,VarMax,VarSize); %初始化速度 particle(i).Velocity=zeros(VarSize); %个体评价 particle(i).Cost=BpFunction(particle(i).Position,P,T,hiddennum,P_test,T_test); %更新个体最优 particle(i).Best.Position=particle(i).Position; particle(i).Best.Cost=particle(i).Cost; %更新群体最优 if particle(i).Best.Cost<GlobalBest.Cost GlobalBest=particle(i).Best; endendBestCost=zeros(MaxIt,1);%% 主循环for it=1:MaxIt for i=1:nPop %更新速度 particle(i).Velocity = w*particle(i).Velocity ... +c1*rand(VarSize).*(particle(i).Best.Position-particle(i).Position) ... +c2*rand(VarSize).*(GlobalBest.Position-particle(i).Position); %对超出范围的速度进行调整 particle(i).Velocity = max(particle(i).Velocity,VelMin); particle(i).Velocity = min(particle(i).Velocity,VelMax); %更新位置 particle(i).Position = particle(i).Position + particle(i).Velocity; %对超出位置范围的速度进行调整 IsOutside=(particle(i).Position<VarMin | particle(i).Position>VarMax); particle(i).Velocity(IsOutside)=-particle(i).Velocity(IsOutside); %对超出范围的位置进行调整 particle(i).Position = max(particle(i).Position,VarMin); particle(i).Position = min(particle(i).Position,VarMax); %种群评估 particle(i).Cost=BpFunction(particle(i).Position,P,T,hiddennum,P_test,T_test); %更新个体最优 if particle(i).Cost<particle(i).Best.Cost particle(i).Best.Position=particle(i).Position; particle(i).Best.Cost=particle(i).Cost; %更新群体最优 if particle(i).Best.Cost<GlobalBest.Cost GlobalBest=particle(i).Best; end end end BestCost(it)=GlobalBest.Cost; disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]); w=w*wdamp;endBestSol=GlobalBest;%% Resultsfigure;%plot(BestCost,'LineWidth',2);semilogy(BestCost,'LineWidth',2);xlabel('迭代次数')ylabel('误差的变化')title('进化过程')grid on;fprintf(['最优初始权值和阈值:\n=',num2str(BestSol.Position),'\n最小误差=',num2str(BestSol.Cost),'\n'])%% 预测今年总冠军概率cur_test=zeros(size(cur_season,1),1);[~,bestCur_sim]=BpFunction(BestSol.Position,P,T,hiddennum,cur_season,cur_test);prob=softmax(bestCur_sim); disp(['勇士队获得2022年NBA总冠军概率为',num2str(prob(1))]);disp(['凯尔特人队获得2022年NBA总冠军概率为',num2str(prob(2))]);toc

BP的函数如下,用于计算误差范数,更新权值和阈值:

%% 输入% x:一个个体的初始权值和阈值% P:训练样本输入% T:训练样本输出% hiddennum:隐含层神经元数% P_test:测试样本输入% T_test:测试样本期望输出%% 输出% err:预测样本的预测误差的范数function [err,T_sim]=BpFunction(x,P,T,hiddennum,P_test,T_test)inputnum=size(P,2); %输入层神经元个数outputnum=size(T,2); %输出层神经元个数%% 数据归一化[p_train,ps_train]=mapminmax(P',0,1);p_test=mapminmax('apply',P_test',ps_train);[t_train,ps_output]=mapminmax(T',0,1);%% 开始构建BP网络net=newff(p_train,t_train,hiddennum); %隐含层为hiddennum个神经元%设定参数网络参数net.trainParam.epochs=1000;net.trainParam.goal=1e-3;net.trainParam.lr=0.01;net.trainParam.showwindow=false; %高版MATLAB使用 不显示图形框%% BP神经网络初始权值和阈值w1num=inputnum*hiddennum; %输入层到隐层的权值个数w2num=outputnum*hiddennum; %隐含层到输出层的权值个数W1=x(1:w1num); %初始输入层到隐含层的权值B1=x(w1num+1:w1num+hiddennum); %隐层神经元阈值W2=x(w1num+hiddennum+1:w1num+hiddennum+w2num); %隐含层到输出层的权值B2=x(w1num+hiddennum+w2num+1:w1num+hiddennum+w2num+outputnum); %输出层阈值net.iw{1,1}=reshape(W1,hiddennum,inputnum); %为神经网络的输入层到隐含层权值赋值net.lw{2,1}=reshape(W2,outputnum,hiddennum); %为神经网络的隐含层到输出层权值赋值net.b{1}=reshape(B1,hiddennum,1); %为神经网络的隐层神经元阈值赋值net.b{2}=reshape(B2,outputnum,1); %为神经网络的输出层阈值赋值%% 开始训练net = train(net,p_train,t_train);%% 测试网络t_sim = sim(net,p_test);T_sim1 = mapminmax('reverse',t_sim,ps_output); %反归一化T_sim=T_sim1';err=norm(T_sim-T_test); %预测结果与测试结果差的范数,范数越小说明预测得越准确,如果范数为0,说明预测得完全准确index0= T_sim<0; %找到预测值小于0的索引index1= T_sim>1; %找到预测值小于1的索引penalty=1000*abs(sum(T_sim(index0)))+1000*sum(T_sim(index1)-1); %预测值小于0或大于1会有惩罚err=err+penalty; %总误差end1.5、预测结果

通过预测结果可以发现整体来说随着迭代次数的增加,误差不断减少,最终预测出的结果是5-5开,不过勇气夺冠的概率稍微大于凯尔特人。

另外可以对上述代码进行优化,准确的说是对粒子群进行优化,使其在迭代次数内找到相对最好的值,上述用到是线性递减,我们这里用了自适应递减权重+收缩因子法,代码如下,其实优化的效果不明显。

%% 基于PSO的Bp神经网络预测2022赛季NBA总冠军clc;clear;ticclose all;%% 加载神经网络的训练样本 测试样本每列一个样本 输入P 输出Tload('basket.mat')%加载数据P = trains(:,1:end-1) ;%训练集输入T = trains(:,end) ;%训练集输出P_test = tests(:,1:end-1) ;%测试集输入T_test = tests(:,end) ;%测试集输出cur_season = pred ;%待预测的数据,今年NBA季后赛数据,第1行为勇士队数据,第2行为凯尔特人队数据inputnum=size(P,2); %输入层神经元个数hiddennum=2*inputnum+1; %初始隐层神经元个数outputnum=size(T,2); %输出层神经元个数w1num=inputnum*hiddennum; %输入层到隐层的权值个数w2num=outputnum*hiddennum; %隐层到输出层的权值个数N=w1num+hiddennum+w2num+outputnum; %待优化的变量的个数%% 定义粒子群优化算法参数nVar=N; %变量数目VarSize=[1,nVar]; %变量矩阵大小VarMin=-0.5; %变量取值下限VarMax=0.5; %变量取值上限MaxIt=200; %最大迭代次数nPop=40; %种群数目w=0.9; %惯性权重%wdamp=0.99; %惯性重量降低系数c1=2.05; %个体学习系数c2=2.05; %群体学习系数VelMax=0.1*(VarMax-VarMin); %速度上限VelMin=-VelMax; %速度下限w_max = 0.9 ;w_min = 0.4 ;C = c1+c2;fai = 2/abs((2-C-sqrt(C^2-4*C))); % 收缩因子%% 初始化empty_particle.Position=[];empty_particle.Cost=[];empty_particle.Velocity=[];empty_particle.Best.Position=[];empty_particle.Best.Cost=[];particle=repmat(empty_particle,nPop,1);GlobalBest.Cost=inf;for i=1:nPop %初始化位置 particle(i).Position=unifrnd(VarMin,VarMax,VarSize); %初始化速度 particle(i).Velocity=zeros(VarSize); %个体评价 particle(i).Cost=BpFunction(particle(i).Position,P,T,hiddennum,P_test,T_test); %更新个体最优 particle(i).Best.Position=particle(i).Position; particle(i).Best.Cost=particle(i).Cost; %更新群体最优 if particle(i).Best.Cost<GlobalBest.Cost GlobalBest=particle(i).Best; endendBestCost=zeros(MaxIt,1);%% 主循环for it=1:MaxIt for i=1:nPop %更新速度 particle(i).Velocity = fai * (w*particle(i).Velocity ... +c1*rand(VarSize).*(particle(i).Best.Position-particle(i).Position) ... +c2*rand(VarSize).*(GlobalBest.Position-particle(i).Position)); %对超出范围的速度进行调整 particle(i).Velocity = max(particle(i).Velocity,VelMin); particle(i).Velocity = min(particle(i).Velocity,VelMax); %更新位置 particle(i).Position = particle(i).Position + particle(i).Velocity; %对超出位置范围的速度进行调整 IsOutside=(particle(i).Position<VarMin | particle(i).Position>VarMax); particle(i).Velocity(IsOutside)=-particle(i).Velocity(IsOutside); %对超出范围的位置进行调整 particle(i).Position = max(particle(i).Position,VarMin); particle(i).Position = min(particle(i).Position,VarMax); %种群评估 particle(i).Cost=BpFunction(particle(i).Position,P,T,hiddennum,P_test,T_test); %更新个体最优 if particle(i).Cost<particle(i).Best.Cost particle(i).Best.Position=particle(i).Position; particle(i).Best.Cost=particle(i).Cost; %更新群体最优 if particle(i).Best.Cost<GlobalBest.Cost GlobalBest=particle(i).Best; end end end BestCost(it)=GlobalBest.Cost; disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]); %自适应权重 f_i=particle(i).Cost; % 取出第i个粒子的适应度 s = 0 ; f_min = particle(1).Best.Cost ; for k = 1 : nPop if f_min > particle(i).Best.Cost fmin = particle(i).Best.Cost ; s = s + particle(i).Best.Cost ; end end f_avg = s/nPop; % 计算此时适应度的平均值 if f_i <= f_avg if f_avg ~= f_min % 如果分母为0,我们就干脆令w=w_min w = w_min + (w_max - w_min)*(f_i - f_min)/(f_avg - f_min); else w = w_min; end else w = w_max; end %w=w*wdamp;endBestSol=GlobalBest;%% Resultsfigure;%plot(BestCost,'LineWidth',2);semilogy(BestCost,'LineWidth',2);xlabel('迭代次数')ylabel('误差的变化')title('进化过程')grid on;fprintf(['最优初始权值和阈值:\n=',num2str(BestSol.Position),'\n最小误差=',num2str(BestSol.Cost),'\n'])%% 预测今年总冠军概率cur_test=zeros(size(cur_season,1),1);[~,bestCur_sim]=BpFunction(BestSol.Position,P,T,hiddennum,cur_season,cur_test);prob=softmax(bestCur_sim); disp(['勇士队获得2022年NBA总冠军概率为',num2str(prob(1))]);disp(['凯尔特人队获得2022年NBA总冠军概率为',num2str(prob(2))]);toc1.6、小结

对于粒子群+bp的算法还有很多需要优化的,特别是对于粒子群的优化方法有很多,比如对权重系数w和学习因子c的优化等,这次主要是讲了一个思想,就是粒子群全局寻优去初始化bp神经网络的初始权值阈值,提高预测准确率。

本文链接地址:https://www.jiuchutong.com/zhishi/300312.html 转载请保留说明!

上一篇:【TypeScript】TS类型守卫(六)(typescript .d.ts)

下一篇:猿创征文|深度学习基于ResNet18网络完成图像分类(猿创部落是干什么的)

  • 收到投资款要交企业所得税吗为什么
  • 企业所得税纳税人
  • 防疫物资采购计入什么费用
  • 个体户季报网上怎么报税
  • 开票地址一定要写全吗
  • 购买网银盾计入什么科目
  • 小微企业和小规模纳税人的区别
  • 办公室转租怎么给对方开发票
  • 个税返还手续费奖励员工需要交个税吗
  • 电子发票红字发票怎么开
  • 什么税不计入税金及附加科目
  • 服务行业主营业务成本包括哪些内容
  • 单位班车费用是福利费吗
  • 职工取暖费计入什么科目
  • 法院退诉讼费账务处理
  • 别人项目挂靠我单位如何进行账务处理?
  • 转让五年以上住房免征个人所得税吗?
  • 职工食堂的费用怎么入账
  • 雇主责任险是否属于财产保险
  • 如何购买车辆保险
  • 个人劳务费可以不开发票吗
  • 不征收增值税项目进项税额可以抵扣吗
  • 合伙创业如何分配财产
  • 税控盘没清盘怎么处罚
  • 亏损企业能否享受失业金
  • 应用程序无法正常启动(0xc0000142)
  • 文件校验有什么用
  • linux中的util值很高
  • 外贸企业汇兑损益要交所得税吗
  • 企业接受捐赠的固定资产账务处理
  • 苹果电脑怎么快速
  • 广告牌费用会计分录
  • 公司总部固定资产折旧
  • mac清理所有数据
  • 非盈利组织又称
  • lsm.exe是什么程序
  • 固定资产净残值率是多少
  • webpack与gulp面试题
  • 车道线检测视频素材
  • php 模拟post
  • 直接进入税金及附加的科目
  • 商业汇票的承兑银行必须具备下列条件
  • 帝国cms商城源码
  • 虚开增值税发票不是也要缴税吗
  • 工程类什么情况下可以三方询价
  • 公司年度汇算
  • 用库存现金支付职工医药费用69元,会计人员
  • pycharm怎么安装mysql
  • 评估价计入什么科目
  • 发出商品 会计科目
  • 安装调试费计入
  • 不动产登记流程有哪些
  • 经营杠杆系数的经济含义
  • 进项税和销项税怎么理解
  • 银行受理汇票贴现业务
  • 租房发票如何做分录
  • 收付实现制和权责发生制的主要区别是确认
  • 施工企业应收账款周转率多少合适
  • mysql中排序
  • xp 修复
  • freebsd常用命令
  • ubuntu 16.10
  • 电脑更新windows11后开机一黑屏
  • winxp安卓
  • xp系统管理员账户
  • mac 应用
  • winxp/win7/win2003 电脑开机密码设置图文方法
  • linux中vi命令详解
  • Linux磁盘配额步骤
  • linux系统硬盘分区类型
  • 检测输入条件的各种组合
  • 刀塔ug是谁
  • python生成器怎么用
  • 通过制作日晷我们可以探索发现一天之中
  • javascript toggle
  • jquery常用操作
  • javascript与java
  • 江西增值税发票查询
  • 营改增后一般纳税人动产租赁税率
  • 教育用地性质可以更改么
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设