位置: IT常识 - 正文

猿创征文|深度学习基于ResNet18网络完成图像分类(猿创部落是干什么的)

编辑:rootadmin
猿创征文|深度学习基于ResNet18网络完成图像分类 一.前言

推荐整理分享猿创征文|深度学习基于ResNet18网络完成图像分类(猿创部落是干什么的),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:猿创部落科技有限公司,猿文教育科技有限公司怎么样,猿文教育科技有限公司怎么样,猿创设计科技有限公司,猿创教育,猿文教育科技有限公司怎么样,猿创教育,猿创设计科技有限公司,内容如对您有帮助,希望把文章链接给更多的朋友!

本次任务是利用ResNet18网络实践更通用的图像分类任务。

ResNet系列网络,图像分类领域的知名算法,经久不衰,历久弥新,直到今天依旧具有广泛的研究意义和应用场景。被业界各种改进,经常用于图像识别任务。

今天主要介绍一下ResNet-18网络结构的案例,其他深层次网络,可以依次类推。

ResNet-18,数字代表的是网络的深度,也就是说ResNet18 网络就是18层的吗?实则不然,其实这里的18指定的是带有权重的 18层,包括卷积层和全连接层,不包括池化层和BN层。

图像分类(Image Classification)是计算机视觉中的一个基础任务,将图像的语义将不同图像划分到不同类别。很多任务也可以转换为图像分类任务。比如人脸检测就是判断一个区域内是否有人脸,可以看作一个二分类的图像分类任务。

数据集:使用的计算机视觉领域的经典CIFAR-10数据集网络层:网络为ResNet18模型优化器:优化器为Adam优化器损失函数:损失函数为交叉熵损失评价指标:评价指标为准确率

 ResNet 网络简介:

 

二.数据预处理2.1 数据集介绍

CIFAR-10数据集包含了10种不同的类别、共60,000张图像,其中每个类别的图像都是6000张,图像大小均为32×3232×32像素。

2.2 数据读取

在本实验中,将原始训练集拆分成了train_set、dev_set两个部分,分别包括40 000条和10 000条样本。将data_batch_1到data_batch_4作为训练集,data_batch_5作为验证集,test_batch作为测试集。 最终的数据集构成为:

训练集:40 000条样本。验证集:10 000条样本。测试集:10 000条样本。

读取一个batch数据的代码如下所示:

import osimport pickleimport numpy as npdef load_cifar10_batch(folder_path, batch_id=1, mode='train'): if mode == 'test': file_path = os.path.join(folder_path, 'test_batch') else: file_path = os.path.join(folder_path, 'data_batch_'+str(batch_id)) #加载数据集文件 with open(file_path, 'rb') as batch_file: batch = pickle.load(batch_file, encoding = 'latin1') imgs = batch['data'].reshape((len(batch['data']),3,32,32)) / 255. labels = batch['labels'] return np.array(imgs, dtype='float32'), np.array(labels)imgs_batch, labels_batch = load_cifar10_batch(folder_path='datasets/cifar-10-batches-py', batch_id=1, mode='train')猿创征文|深度学习基于ResNet18网络完成图像分类(猿创部落是干什么的)

查看数据的维度:

#打印一下每个batch中X和y的维度print ("batch of imgs shape: ",imgs_batch.shape, "batch of labels shape: ", labels_batch.shape)

batch of imgs shape:  (10000, 3, 32, 32) batch of labels shape:  (10000,)

可视化观察其中的一张样本图像和对应的标签,代码如下所示:

%matplotlib inlineimport matplotlib.pyplot as pltimage, label = imgs_batch[1], labels_batch[1]print("The label in the picture is {}".format(label))plt.figure(figsize=(2, 2))plt.imshow(image.transpose(1,2,0))plt.savefig('cnn-car.pdf')

2.3 构造Dataset类

构造一个CIFAR10Dataset类,其将继承自paddle.io.DataSet类,可以逐个数据进行处理。代码实现如下:

import paddleimport paddle.io as iofrom paddle.vision.transforms import Normalizeclass CIFAR10Dataset(io.Dataset): def __init__(self, folder_path='/home/aistudio/cifar-10-batches-py', mode='train'): if mode == 'train': #加载batch1-batch4作为训练集 self.imgs, self.labels = load_cifar10_batch(folder_path=folder_path, batch_id=1, mode='train') for i in range(2, 5): imgs_batch, labels_batch = load_cifar10_batch(folder_path=folder_path, batch_id=i, mode='train') self.imgs, self.labels = np.concatenate([self.imgs, imgs_batch]), np.concatenate([self.labels, labels_batch]) elif mode == 'dev': #加载batch5作为验证集 self.imgs, self.labels = load_cifar10_batch(folder_path=folder_path, batch_id=5, mode='dev') elif mode == 'test': #加载测试集 self.imgs, self.labels = load_cifar10_batch(folder_path=folder_path, mode='test') self.transform = Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010], data_format='CHW') def __getitem__(self, idx): img, label = self.imgs[idx], self.labels[idx] img = self.transform(img) return img, label def __len__(self): return len(self.imgs)paddle.seed(100)train_dataset = CIFAR10Dataset(folder_path='datasets/cifar-10-batches-py', mode='train')dev_dataset = CIFAR10Dataset(folder_path='datasets/cifar-10-batches-py', mode='dev')test_dataset = CIFAR10Dataset(folder_path='datasets/cifar-10-batches-py', mode='test')三、模型构建

使用飞桨高层API中的Resnet18进行图像分类实验。

from paddle.vision.models import resnet18resnet18_model = resnet18()

飞桨高层 API是对飞桨API的进一步封装与升级,提供了更加简洁易用的API,进一步提升了飞桨的易学易用性。其中,飞桨高层API封装了以下模块:

Model类,支持仅用几行代码完成模型的训练;图像预处理模块,包含数十种数据处理函数,基本涵盖了常用的数据处理、数据增强方法;计算机视觉领域和自然语言处理领域的常用模型,包括但不限于mobilenet、resnet、yolov3、cyclegan、bert、transformer、seq2seq等等,同时发布了对应模型的预训练模型,可以直接使用这些模型或者在此基础上完成二次开发。四、模型训练

复用RunnerV3类,实例化RunnerV3类,并传入训练配置。 使用训练集和验证集进行模型训练,共训练30个epoch。 在实验中,保存准确率最高的模型作为最佳模型。代码实现如下:

import paddle.nn.functional as Fimport paddle.optimizer as optfrom nndl import RunnerV3, Accuracy#指定运行设备use_gpu = True if paddle.get_device().startswith("gpu") else Falseif use_gpu: paddle.set_device('gpu:0')#学习率大小lr = 0.001 #批次大小batch_size = 64 #加载数据train_loader = io.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)dev_loader = io.DataLoader(dev_dataset, batch_size=batch_size)test_loader = io.DataLoader(test_dataset, batch_size=batch_size) #定义网络model = resnet18_model#定义优化器,这里使用Adam优化器以及l2正则化策略,相关内容在7.3.3.2和7.6.2中会进行详细介绍optimizer = opt.Adam(learning_rate=lr, parameters=model.parameters(), weight_decay=0.005)#定义损失函数loss_fn = F.cross_entropy#定义评价指标metric = Accuracy(is_logist=True)#实例化RunnerV3runner = RunnerV3(model, optimizer, loss_fn, metric)#启动训练log_steps = 3000eval_steps = 3000runner.train(train_loader, dev_loader, num_epochs=30, log_steps=log_steps, eval_steps=eval_steps, save_path="best_model.pdparams")

可视化观察训练集与验证集的准确率及损失变化情况。

from nndl import plotplot(runner, fig_name='cnn-loss4.pdf')

在本实验中,使用了第7章中介绍的Adam优化器进行网络优化,如果使用SGD优化器,会造成过拟合的现象,在验证集上无法得到很好的收敛效果。可以尝试使用第7章中其他优化策略调整训练配置,达到更高的模型精度。

五、模型评价

使用测试数据对在训练过程中保存的最佳模型进行评价,观察模型在测试集上的准确率以及损失情况。代码实现如下:

# 加载最优模型runner.load_model('best_model.pdparams')# 模型评价score, loss = runner.evaluate(test_loader)print("[Test] accuracy/loss: {:.4f}/{:.4f}".format(score, loss))

[Test] accuracy/loss: 0.7234/0.8324

六、模型预测¶

同样地,也可以使用保存好的模型,对测试集中的数据进行模型预测,观察模型效果,具体代码实现如下:

#获取测试集中的一个batch的数据X, label = next(test_loader())logits = runner.predict(X)#多分类,使用softmax计算预测概率pred = F.softmax(logits)#获取概率最大的类别pred_class = paddle.argmax(pred[2]).numpy()label = label[2][0].numpy()#输出真实类别与预测类别print("The true category is {} and the predicted category is {}".format(label[0], pred_class[0]))#可视化图片plt.figure(figsize=(2, 2))imgs, labels = load_cifar10_batch(folder_path='/home/aistudio/datasets/cifar-10-batches-py', mode='test')plt.imshow(imgs[2].transpose(1,2,0))plt.savefig('cnn-test-vis.pdf')

The true category is 8 and the predicted category is 8

真实是8,预测是8。ship

本文链接地址:https://www.jiuchutong.com/zhishi/300313.html 转载请保留说明!

上一篇:备战数学建模45-粒子群算法优化BP神经网络(攻坚站10)(数学建模心态崩了)

下一篇:ChatGPT在编程中的应用(编程中char什么意思)

  • 沃助理业务功能费怎么退订(沃助理业务功能有用吗)

    沃助理业务功能费怎么退订(沃助理业务功能有用吗)

  • iphone有自带的地震预警吗(iphone有自带的地震预警我的老师好撩人)

    iphone有自带的地震预警吗(iphone有自带的地震预警我的老师好撩人)

  • 支付宝我的家怎么踢人呢(支付宝我的家怎么存钱)

    支付宝我的家怎么踢人呢(支付宝我的家怎么存钱)

  • 淘宝店铺第几天给流量(淘宝店铺第几天上线)

    淘宝店铺第几天给流量(淘宝店铺第几天上线)

  • oppo账号被别人实名认证了(oppo账号被别人登录了,会看到我手机里的应用么)

    oppo账号被别人实名认证了(oppo账号被别人登录了,会看到我手机里的应用么)

  • 淘宝助理怎么不能用了(淘宝助理不能用可以用什么软件)

    淘宝助理怎么不能用了(淘宝助理不能用可以用什么软件)

  • 50兆可用1200m的路由器吗(50兆可以干嘛)

    50兆可用1200m的路由器吗(50兆可以干嘛)

  • 快手号注销了还能搜索到吗(快手号注销了还能查到身份信息吗)

    快手号注销了还能搜索到吗(快手号注销了还能查到身份信息吗)

  • 天猫积分退货成功后会不会返还(天猫积分退货成功怎么办)

    天猫积分退货成功后会不会返还(天猫积分退货成功怎么办)

  • ipad air可以连鼠标吗(ipad可不可以连接鼠标)

    ipad air可以连鼠标吗(ipad可不可以连接鼠标)

  • vivo怎么升级安卓版本(vivo怎么升级安卓11系统)

    vivo怎么升级安卓版本(vivo怎么升级安卓11系统)

  • ipad怎么整理桌面(ipad怎么整理桌面最好看)

    ipad怎么整理桌面(ipad怎么整理桌面最好看)

  • 小米9支持40w快充吗(小米支持40w快充吗)

    小米9支持40w快充吗(小米支持40w快充吗)

  • 苹果保修期内哪些免费(苹果保修期内哪里可以修)

    苹果保修期内哪些免费(苹果保修期内哪里可以修)

  • iphone11屏幕校准怎么弄(苹果11手机屏幕校准)

    iphone11屏幕校准怎么弄(苹果11手机屏幕校准)

  • 苹果x和11屏幕大小(苹果x和苹果11那个屏幕大)

    苹果x和11屏幕大小(苹果x和苹果11那个屏幕大)

  • 让手机锁屏后显示时钟(让手机锁屏后显示时钟红米)

    让手机锁屏后显示时钟(让手机锁屏后显示时钟红米)

  • a1978是几代苹果手表(a1978是几代苹果多少钱买的)

    a1978是几代苹果手表(a1978是几代苹果多少钱买的)

  • 抖音进度条怎么滑动(抖音进度条怎么不动了)

    抖音进度条怎么滑动(抖音进度条怎么不动了)

  • 航拍无人机怎么操作(航拍无人机怎么用)

    航拍无人机怎么操作(航拍无人机怎么用)

  • 虚拟号码怎样查真实号码(虚拟号码怎样查快递)

    虚拟号码怎样查真实号码(虚拟号码怎样查快递)

  • 怎么设置陌生号码打进来是空号(怎么设置陌生号码来电拦截)

    怎么设置陌生号码打进来是空号(怎么设置陌生号码来电拦截)

  • mac appstore出现未知错误怎么办 mac市场错误解决办法(macbookappstore未知错误)

    mac appstore出现未知错误怎么办 mac市场错误解决办法(macbookappstore未知错误)

  • 福利费进项税额转出会计分录账务处理
  • 偶然所得纳税计算
  • 用友会计报表
  • 发票隔月作废怎么操作
  • 可供出售金融资产公允价值变动
  • 税务局多扣的一笔钱
  • 个人劳务费 税
  • 如何判断开专票还是普票
  • 抬头 个人
  • 外汇结汇的方法有哪些呢?
  • 小规模公司可以贷款吗
  • 生产共同费用每个月都有摊销吗?
  • 使用人民币进行石油贸易结算
  • 小规模免征增值税政策
  • 个人承包劳务合法吗?
  • 企业收到退款应该如何做会计处理?
  • 电子发票增加开票项目
  • 小规模季报都报哪些税种
  • 多给员工交了社保能退回吗
  • 仓库折旧费
  • 员工意外伤害保险范围
  • 标准差怎么算 例题
  • executor进程
  • win10专区
  • 外销收入申报表怎么填
  • mac快捷键是什么意思
  • php开启pdo
  • php常见面试题
  • 商业企业积分赠商品如何计算企业所得税
  • PHP:mdecrypt_generic()的用法_Mcrypt函数
  • php实现文件上传需要使用哪个全局变量
  • php管理员和用户登录
  • thinkphp技巧
  • 长期待摊费用应该怎么摊销
  • php绘制图片
  • 压缩的命令
  • 网络命令netstat
  • 支出和收入怎么算呀
  • 各会计科目的含义
  • 桥接模式例题
  • 帝国cms界面
  • access数据库干嘛的
  • python os.path.join()函数的使用
  • 资产减值损失借方余额在利润表怎么填列
  • 行政单位福利费管理办法
  • sql server定时作业
  • 土地增值税中开发间接费用工资包括哪些人
  • 个人缴纳公积金的方法
  • 新准则对企业的影响
  • 开具发票后什么情况下可以零申报?
  • 收购发票如何确认成本
  • 审计库存现金盘点表
  • 预提费用为什么是负债
  • 处置存货损失应该放哪个科目
  • 发票每月上报汇总怎么弄
  • 进项税认证未抵扣怎么做账
  • 税款滞纳金征收比率怎么算
  • a公司刚刚执行了一个采购项目
  • Ubuntu下mysql安装和操作图文教程
  • 如何在sql server表中添加数据表格为什么没有显示
  • win8系统如何查看电脑型号
  • ubuntuone
  • windows后台启动VirtualBox虚拟机让界面不在出现
  • linux cat 命令
  • rsync 教程
  • naimag32.exe - naimag32是什么进程 有什么用
  • windows10更新遇到错误怎么解决
  • win7自动休眠怎么取消
  • js代码执行顺序简单介绍
  • node.js获取文件信息的方法是什么
  • android studio 新建项目只有.idea文件
  • jquery 获取json的key
  • node.js教学
  • input lead
  • ubuntu libtorch
  • js的select()方法
  • 技术总结2000字
  • 贸易公司税收政策
  • 怎么查询企业类别
  • 发生技术入股递增怎么办
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设