位置: IT常识 - 正文
推荐整理分享猿创征文|深度学习基于ResNet18网络完成图像分类(猿创部落是干什么的),希望有所帮助,仅作参考,欢迎阅读内容。
文章相关热门搜索词:猿创部落科技有限公司,猿文教育科技有限公司怎么样,猿文教育科技有限公司怎么样,猿创设计科技有限公司,猿创教育,猿文教育科技有限公司怎么样,猿创教育,猿创设计科技有限公司,内容如对您有帮助,希望把文章链接给更多的朋友!
本次任务是利用ResNet18网络实践更通用的图像分类任务。
ResNet系列网络,图像分类领域的知名算法,经久不衰,历久弥新,直到今天依旧具有广泛的研究意义和应用场景。被业界各种改进,经常用于图像识别任务。
今天主要介绍一下ResNet-18网络结构的案例,其他深层次网络,可以依次类推。
ResNet-18,数字代表的是网络的深度,也就是说ResNet18 网络就是18层的吗?实则不然,其实这里的18指定的是带有权重的 18层,包括卷积层和全连接层,不包括池化层和BN层。
图像分类(Image Classification)是计算机视觉中的一个基础任务,将图像的语义将不同图像划分到不同类别。很多任务也可以转换为图像分类任务。比如人脸检测就是判断一个区域内是否有人脸,可以看作一个二分类的图像分类任务。
数据集:使用的计算机视觉领域的经典CIFAR-10数据集网络层:网络为ResNet18模型优化器:优化器为Adam优化器损失函数:损失函数为交叉熵损失评价指标:评价指标为准确率ResNet 网络简介:
二.数据预处理2.1 数据集介绍
CIFAR-10数据集包含了10种不同的类别、共60,000张图像,其中每个类别的图像都是6000张,图像大小均为32×3232×32像素。
2.2 数据读取在本实验中,将原始训练集拆分成了train_set、dev_set两个部分,分别包括40 000条和10 000条样本。将data_batch_1到data_batch_4作为训练集,data_batch_5作为验证集,test_batch作为测试集。 最终的数据集构成为:
训练集:40 000条样本。验证集:10 000条样本。测试集:10 000条样本。读取一个batch数据的代码如下所示:
import osimport pickleimport numpy as npdef load_cifar10_batch(folder_path, batch_id=1, mode='train'): if mode == 'test': file_path = os.path.join(folder_path, 'test_batch') else: file_path = os.path.join(folder_path, 'data_batch_'+str(batch_id)) #加载数据集文件 with open(file_path, 'rb') as batch_file: batch = pickle.load(batch_file, encoding = 'latin1') imgs = batch['data'].reshape((len(batch['data']),3,32,32)) / 255. labels = batch['labels'] return np.array(imgs, dtype='float32'), np.array(labels)imgs_batch, labels_batch = load_cifar10_batch(folder_path='datasets/cifar-10-batches-py', batch_id=1, mode='train')查看数据的维度:
#打印一下每个batch中X和y的维度print ("batch of imgs shape: ",imgs_batch.shape, "batch of labels shape: ", labels_batch.shape)batch of imgs shape: (10000, 3, 32, 32) batch of labels shape: (10000,)
可视化观察其中的一张样本图像和对应的标签,代码如下所示:
%matplotlib inlineimport matplotlib.pyplot as pltimage, label = imgs_batch[1], labels_batch[1]print("The label in the picture is {}".format(label))plt.figure(figsize=(2, 2))plt.imshow(image.transpose(1,2,0))plt.savefig('cnn-car.pdf')2.3 构造Dataset类构造一个CIFAR10Dataset类,其将继承自paddle.io.DataSet类,可以逐个数据进行处理。代码实现如下:
import paddleimport paddle.io as iofrom paddle.vision.transforms import Normalizeclass CIFAR10Dataset(io.Dataset): def __init__(self, folder_path='/home/aistudio/cifar-10-batches-py', mode='train'): if mode == 'train': #加载batch1-batch4作为训练集 self.imgs, self.labels = load_cifar10_batch(folder_path=folder_path, batch_id=1, mode='train') for i in range(2, 5): imgs_batch, labels_batch = load_cifar10_batch(folder_path=folder_path, batch_id=i, mode='train') self.imgs, self.labels = np.concatenate([self.imgs, imgs_batch]), np.concatenate([self.labels, labels_batch]) elif mode == 'dev': #加载batch5作为验证集 self.imgs, self.labels = load_cifar10_batch(folder_path=folder_path, batch_id=5, mode='dev') elif mode == 'test': #加载测试集 self.imgs, self.labels = load_cifar10_batch(folder_path=folder_path, mode='test') self.transform = Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010], data_format='CHW') def __getitem__(self, idx): img, label = self.imgs[idx], self.labels[idx] img = self.transform(img) return img, label def __len__(self): return len(self.imgs)paddle.seed(100)train_dataset = CIFAR10Dataset(folder_path='datasets/cifar-10-batches-py', mode='train')dev_dataset = CIFAR10Dataset(folder_path='datasets/cifar-10-batches-py', mode='dev')test_dataset = CIFAR10Dataset(folder_path='datasets/cifar-10-batches-py', mode='test')三、模型构建使用飞桨高层API中的Resnet18进行图像分类实验。
from paddle.vision.models import resnet18resnet18_model = resnet18()飞桨高层 API是对飞桨API的进一步封装与升级,提供了更加简洁易用的API,进一步提升了飞桨的易学易用性。其中,飞桨高层API封装了以下模块:
Model类,支持仅用几行代码完成模型的训练;图像预处理模块,包含数十种数据处理函数,基本涵盖了常用的数据处理、数据增强方法;计算机视觉领域和自然语言处理领域的常用模型,包括但不限于mobilenet、resnet、yolov3、cyclegan、bert、transformer、seq2seq等等,同时发布了对应模型的预训练模型,可以直接使用这些模型或者在此基础上完成二次开发。四、模型训练复用RunnerV3类,实例化RunnerV3类,并传入训练配置。 使用训练集和验证集进行模型训练,共训练30个epoch。 在实验中,保存准确率最高的模型作为最佳模型。代码实现如下:
import paddle.nn.functional as Fimport paddle.optimizer as optfrom nndl import RunnerV3, Accuracy#指定运行设备use_gpu = True if paddle.get_device().startswith("gpu") else Falseif use_gpu: paddle.set_device('gpu:0')#学习率大小lr = 0.001 #批次大小batch_size = 64 #加载数据train_loader = io.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)dev_loader = io.DataLoader(dev_dataset, batch_size=batch_size)test_loader = io.DataLoader(test_dataset, batch_size=batch_size) #定义网络model = resnet18_model#定义优化器,这里使用Adam优化器以及l2正则化策略,相关内容在7.3.3.2和7.6.2中会进行详细介绍optimizer = opt.Adam(learning_rate=lr, parameters=model.parameters(), weight_decay=0.005)#定义损失函数loss_fn = F.cross_entropy#定义评价指标metric = Accuracy(is_logist=True)#实例化RunnerV3runner = RunnerV3(model, optimizer, loss_fn, metric)#启动训练log_steps = 3000eval_steps = 3000runner.train(train_loader, dev_loader, num_epochs=30, log_steps=log_steps, eval_steps=eval_steps, save_path="best_model.pdparams")可视化观察训练集与验证集的准确率及损失变化情况。
from nndl import plotplot(runner, fig_name='cnn-loss4.pdf')在本实验中,使用了第7章中介绍的Adam优化器进行网络优化,如果使用SGD优化器,会造成过拟合的现象,在验证集上无法得到很好的收敛效果。可以尝试使用第7章中其他优化策略调整训练配置,达到更高的模型精度。
五、模型评价使用测试数据对在训练过程中保存的最佳模型进行评价,观察模型在测试集上的准确率以及损失情况。代码实现如下:
# 加载最优模型runner.load_model('best_model.pdparams')# 模型评价score, loss = runner.evaluate(test_loader)print("[Test] accuracy/loss: {:.4f}/{:.4f}".format(score, loss))[Test] accuracy/loss: 0.7234/0.8324
六、模型预测¶同样地,也可以使用保存好的模型,对测试集中的数据进行模型预测,观察模型效果,具体代码实现如下:
#获取测试集中的一个batch的数据X, label = next(test_loader())logits = runner.predict(X)#多分类,使用softmax计算预测概率pred = F.softmax(logits)#获取概率最大的类别pred_class = paddle.argmax(pred[2]).numpy()label = label[2][0].numpy()#输出真实类别与预测类别print("The true category is {} and the predicted category is {}".format(label[0], pred_class[0]))#可视化图片plt.figure(figsize=(2, 2))imgs, labels = load_cifar10_batch(folder_path='/home/aistudio/datasets/cifar-10-batches-py', mode='test')plt.imshow(imgs[2].transpose(1,2,0))plt.savefig('cnn-test-vis.pdf')The true category is 8 and the predicted category is 8
真实是8,预测是8。ship
上一篇:备战数学建模45-粒子群算法优化BP神经网络(攻坚站10)(数学建模心态崩了)
下一篇:ChatGPT在编程中的应用(编程中char什么意思)
友情链接: 武汉网站建设