位置: IT常识 - 正文

模型调参常见问题及Aadm优化器调参记录(模型参数是什么意思)

编辑:rootadmin
模型调参常见问题及Aadm优化器调参记录 超参数调试、Batch正则化和编程框架

推荐整理分享模型调参常见问题及Aadm优化器调参记录(模型参数是什么意思),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:模型调参是调节什么,模型调参是调节什么,模型参数调优,调整模型参数,模型参数调优,模型参数调优,模型调参方法,模型调参调的是什么,内容如对您有帮助,希望把文章链接给更多的朋友!

参考链接:链接:https://blog.csdn.net/red_stone1/article/details/78403416

1. Tuning Process 深度神经网络需要调试的超参数(Hyperparameters)较多,包括:

α:学习率

β:动量梯度下降因子

β1,β2,ε:Adam算法参数

#layers:神经网络层数

#hidden units:各隐藏层神经元个数

learning rate decay:学习因子下降参数

mini-batch size:批量训练样本包含的样本个数

超参数之间也有重要性差异。通常来说,学习因子α是最重要的超参数,也是需要重点调试的超参数。动量梯度下降因子β、各隐藏层神经元个数#hidden units和mini-batch size的重要性仅次于αα。然后就是神经网络层数#layers和学习因子下降参数learning rate decay。最后,Adam算法的三个参数β1,β2,εβ1,β2,ε一般常设置为0.9,0.999和10−8,不需要反复调试。当然,这里超参数重要性的排名并不是绝对的,具体情况,具体分析。

模型调参注意细节

神经网络的调参效果不理想时->(解决思路) - 账号 - 博客园

非过拟合情况

是否找到合适的损失函数?(不同问题适合不同的损失函数)(理解不同损失函数的适用场景) (解决思路)选择合适的损失函数(choosing proper loss ) 神经网络的损失函数是非凸的,有多个局部最低点,目标是找到一个可用的最低点。非凸函数是凹凸不平的,但是不同的损失函数凹凸起伏的程度不同,例如下述的平方损失和交叉熵损失,后者起伏更大,且后者更容易找到一个可用的最低点,从而达到优化的目的。 -. Square Error(平方损失) -. Cross Entropy(交叉熵损失)batch size是否合适?batch size太大 -> loss很快平稳,batch size太小 -> loss会震荡(理解mini-batch) (解决思路)采用合适的Mini-batch进行学习,使用Mini-batch的方法进行学习,一方面可以减少计算量,一方面有助于跳出局部最优点。因此要使用Mini-batch。更进一步,batch的选择非常重要,batch取太大会陷入局部最小值,batch取太小会抖动厉害是否选择了合适的激活函数?(各个激活函数的来源和差异) (解决思路)使用激活函数把卷积层输出结果做非线性映射,但是要选择合适的激活函数。 -. Sigmoid函数是一个平滑函数,且具有连续性和可微性,它的最大优点就是非线性。但该函数的两端很缓,会带来猪队友的问题,易发生学不动的情况,产生梯度弥散。 -. ReLU函数是如今设计神经网络时使用最广泛的激活函数,该函数为非线性映射,且简单,可缓解梯度弥散。学习率,学习率小收敛慢,学习率大loss震荡(怎么选取合适的学习率) (解决思路)学习率过大,会抖动厉害,导致没有优化提 , 学习率太小,下降太慢,训练会很慢是否选择了合适的优化算法?(比如Adam)(理解不同优化算法的适用场景) (解决思路)在梯度的基础上使用动量,有助于冲出局部最低点。过拟合情况Early Stopping(早停法) (详细解释)早停法将数据分成训练集和验证集,训练集用来计算梯度、更新权重和阈值,验证集用来估计误差,若训练集误差降低但验证集误差升高,则停止训练,同时返回具有最小验证集误差的连接权和阈值。Regularization(正则化) (详细解释) 权重衰减(Weight Decay)。到训练的后期,通过衰减因子使权重的梯度下降地越来越缓。 *. Batch Normalization *. Dropout *. L1 , L2调整网络结构增大训练数据量 *. 获取更多的数据 *. 数据扩充(图片: 镜像 , 翻转 , 随机裁剪等.)

优化器参数

torch.optim.Adam(model.parameters(), lr=lr ,eps=args.epsilon)

params (iterable) – iterable of parameters to optimize or dicts defining parameter groups

lr (float, optional) – learning rate (default: 1e-3)

betas (Tuple[float, float], optional) – coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))

eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8)

weight_decay (float, optional) – weight decay (L2 penalty) (default: 0)

amsgrad (boolean, optional) – whether to use the AMSGrad variant of this algorithm from the paper On the Convergence of Adam and Beyond (default: False)

epsilon从0.1到1e-06,测试auc从0.6到0.9太可怕了,

模型调参常见问题及Aadm优化器调参记录(模型参数是什么意思)

 torch.optim.Adam(model.parameters(), lr=lr,weight_decay=0.0005) 

加入weight_decay又到0.68附近

去掉weight_decay到测试的到0.88,训练集还在升高还往上升肯定有问题

 自适应优化器Adam还需加learning-rate decay

自适应优化器Adam还需加learning-rate decay吗? - 知乎

作者说加了lr decay的Adam还是有效提升了模型的表现。

但这只是在它的实验里进行了说明,并没有从理论上进行证明。因此不能说有定论,但是若你的模型结果极不稳定的问题,loss会抖动特别厉害,不妨尝试一下加个lr decay试一试。

如何加

torch中有很多进行lr decay的方式,这里给一个ExponentialLR API 的demo代码,就是这样就好了。

ExponentialLR原理: decayed_lr = lr * decay_rate ^ (global_step / decay_steps)

my_optim = Adam(model.parameters, lr)decayRate = 0.96my_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=my_optim, gamma=decayRate)#my_lr_scheduler = optim.lr_scheduler.StepLR(my_optim, step_size=lr_decay, gamma=decayRate)for e in epochs: train_epoch() my_optim.step() valid_epoch() my_lr_scheduler.step()学习率衰减策略 

pytorch必须掌握的的4种学习率衰减策略 - 知乎

优化器NoamOpt

我们选择Adam[1]作为优化器,其参数为 

和 . 根据以下公式,我们在训练过程中改变了学习率:

 

在预热中随步数线性地增加学习速率,并且此后与步数的反平方根成比例地减小它。我们设置预热步数为4000。

注意:这部分非常重要,需要这种设置训练模型。

class NoamOpt: "Optim wrapper that implements rate." def __init__(self, model_size, factor, warmup, optimizer): self.optimizer = optimizer self._step = 0 self.warmup = warmup self.factor = factor self.model_size = model_size self._rate = 0 def step(self): "Update parameters and rate" self._step += 1 rate = self.rate() for p in self.optimizer.param_groups: p['lr'] = rate self._rate = rate self.optimizer.step() def rate(self, step = None): "Implement `lrate` above" if step is None: step = self._step return self.factor * \ (self.model_size ** (-0.5) * min(step ** (-0.5), step * self.warmup ** (-1.5)))def get_std_opt(model): return NoamOpt(model.src_embed[0].d_model, 2, 4000, torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))

当前模型在不同模型大小和超参数的情况下的曲线示例。

# Three settings of the lrate hyperparameters.opts = [NoamOpt(512, 1, 4000, None), NoamOpt(512, 1, 8000, None), NoamOpt(256, 1, 4000, None)]plt.plot(np.arange(1, 20000), [[opt.rate(i) for opt in opts] for i in range(1, 20000)])plt.legend(["512:4000", "512:8000", "256:4000"])None

步数为4000是指,我使用时候设置为多大合适呢

loss为负

可能的原因:数据为归一化

网络中的:

self.softmax = nn.Softmax(dim=1) 改为:

self.softmax = nn.LogSoftmax(dim=1)

测试集AUC高于训练集AUC

 感觉这个回答似乎有些道理,我的数据集划分的时候可能没有随机打乱

本文链接地址:https://www.jiuchutong.com/zhishi/300461.html 转载请保留说明!

上一篇:【小程序】微信小程序自定义组件Component详细总结(小程序微信认证)

下一篇:【前端进阶】-TypeScript高级类型 | 交叉类型、索引签名类型、映射类型(前端技巧)

  • 学习强国软件如何邀请加入组织

    学习强国软件如何邀请加入组织

  • 爱奇艺怎么下载视频到本地(爱奇艺怎么下载mp4格式视频)

    爱奇艺怎么下载视频到本地(爱奇艺怎么下载mp4格式视频)

  • 荣耀30青春版如何设置返回键(荣耀30青春版如何升级鸿蒙系统)

    荣耀30青春版如何设置返回键(荣耀30青春版如何升级鸿蒙系统)

  • 苹果11如何设置电池百分比(苹果11如何设置来电铃声)

    苹果11如何设置电池百分比(苹果11如何设置来电铃声)

  • 华为p30手机如何刷门禁卡(华为p30手机如何恢复出厂设置)

    华为p30手机如何刷门禁卡(华为p30手机如何恢复出厂设置)

  • 为什么抖音只能发59秒吗(为什么抖音只能发15秒视频)

    为什么抖音只能发59秒吗(为什么抖音只能发15秒视频)

  • 华为p40飞行模式在哪里(华为p40飞行模式在哪里设置)

    华为p40飞行模式在哪里(华为p40飞行模式在哪里设置)

  • 手机只有关机才能充电怎么办(手机只有关机才能充进电)

    手机只有关机才能充电怎么办(手机只有关机才能充进电)

  • 低电量模式充电快还是正常充电快(低电量模式充电好吗)

    低电量模式充电快还是正常充电快(低电量模式充电好吗)

  • 华为p40密码忘了怎么办(华为p40pro密码忘记了怎么解锁)

    华为p40密码忘了怎么办(华为p40pro密码忘记了怎么解锁)

  • 网易换绑手机要多久(网易换绑手机要押金么)

    网易换绑手机要多久(网易换绑手机要押金么)

  • 微信多久可以二次申诉(微信多久可以二次实名)

    微信多久可以二次申诉(微信多久可以二次实名)

  • 手机wlan已连接不可上网是什么原因(手机WLAN已连接但无法访问互联网)

    手机wlan已连接不可上网是什么原因(手机WLAN已连接但无法访问互联网)

  • 华为荣耀的语音助手怎么唤醒(华为荣耀的语音助手可以改名字吗)

    华为荣耀的语音助手怎么唤醒(华为荣耀的语音助手可以改名字吗)

  • vivoiqoo pro上市时间(vivoiqoopro上市时间和价格)

    vivoiqoo pro上市时间(vivoiqoopro上市时间和价格)

  • 手机克隆安全吗(荣耀手机克隆安全吗)

    手机克隆安全吗(荣耀手机克隆安全吗)

  • b站特别关注有什么用(B站特别关注有上限吗)

    b站特别关注有什么用(B站特别关注有上限吗)

  • 为什么新买的耳机插在手机上没有用(为什么新买的耳机只有一边有声音)

    为什么新买的耳机插在手机上没有用(为什么新买的耳机只有一边有声音)

  • 苹果x信息有个感叹号(iphone信息有个)

    苹果x信息有个感叹号(iphone信息有个)

  • 小寻儿童电话手表怎么拨号(小寻儿童电话手表)

    小寻儿童电话手表怎么拨号(小寻儿童电话手表)

  • 微信京东怎么取消订单(微信京东怎么取消银行卡绑定支付)

    微信京东怎么取消订单(微信京东怎么取消银行卡绑定支付)

  • mb是多少流量(100mb是多少流量)

    mb是多少流量(100mb是多少流量)

  • 苹果6splus和7plus的区别(苹果6splus和7plus和8plus)

    苹果6splus和7plus的区别(苹果6splus和7plus和8plus)

  • 小规模纳税人应纳增值税额的计算
  • 出差补贴需要纳税吗
  • 银行承兑汇票提前承兑收多少手续费
  • 公司收据收款人怎么写
  • 电子税务局实名核验失败怎么回事啊
  • 抵扣进项税怎么做凭证
  • 本期缴纳前期应纳税额
  • 委托开发的定义
  • 长期待摊费用摊销年限规定
  • 员工本地住宿费会计分录
  • 培训学校教具记在什么费用
  • 个人抬头发票可以抵税个人所得税吗
  • 退回产品怎么做分录
  • 应收账款计提坏账比例
  • 2021年工作绩效未达标扣工资
  • 快递售后是干嘛的
  • 企业向个人采购产品没有发票
  • 进货方的现金折扣怎么处理?
  • 周转材料属于什么会计要素
  • 补缴去年地税社保的会计分录怎么写?
  • 一般企业每个月的保洁费用是多少
  • 互联网合同要交社保吗
  • 不交增值税当月还需要计提税金吗?
  • 拆迁安置房建设流程
  • 专票上的账号打错了
  • 小规模纳税人是公司还是个人
  • 企业专项储备属于什么科目
  • 专用发票超过360天作废
  • 住房补贴计入个人所得税吗
  • macos10.10.5怎么升级
  • 经济成本和会计成本的大小
  • 利息如何做会计分录
  • 收到广告费收入怎么做分录
  • 投资收益亏损后会怎么样
  • 政策性专项资金包括哪些
  • php7.0
  • 出口收汇可以收人民币吗
  • 设备租赁费属于劳务吗
  • 外企采购回扣普遍吗
  • 商业折扣影响入账金额吗
  • 对外支付佣金需要扣缴所得税吗
  • .size()
  • 建筑劳务税率是13还是6
  • 进项税额转出的进项税额如何处理
  • 在建工程账务核算及处理
  • 一般纳税人哪种税
  • 职工福利费允许扣除比例
  • 如何判断固定资产已提足折旧
  • 一般整形医院的药在哪进货
  • 处置使用过的固定资产,税率按多少
  • 置换他行按揭贷款
  • 一般纳税人开普票和专票有什么区别
  • 研发设备的折旧计入研发费用吗
  • 缴纳社保不计提可以吗
  • 汇算清缴的会计分录怎么做
  • 收到代持股权的账务处理
  • 为什么股票配资的都在境外交易
  • 结转损益利息收入贷方红字什么意思
  • 其他应付款包括哪些内容
  • 金税盘技术维护费可以不交吗
  • 外地预缴需要缴纳印花税吗
  • 老会计带新手教学真账实操
  • 其他货币资金属于什么类科目
  • 个人如何成立公司
  • sqlserver附加数据库时出错,请单击消息中的超链接
  • 建立索引mysql
  • mysql中间件有哪些
  • mysql分页实现
  • 笔记本xp无线网络连接禁用启用不了
  • centos8查看cpu温度
  • win8纯净版32位
  • win7系统虚拟机
  • cocos2d安装
  • 编写批处理
  • android线程间通信的几种方法
  • 福建省国税局领导班子介绍
  • 福州房管局网签查询
  • 浙江职称评审网站官网
  • 地税局多措并举工作总结
  • 重庆税务总局重庆电子税务局
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设