位置: IT常识 - 正文

PyTorch 深度学习实战 | DIEN 模拟兴趣演化的序列网络

编辑:rootadmin
PyTorch 深度学习实战 | DIEN 模拟兴趣演化的序列网络 01、实例:DIEN 模拟兴趣演化的序列网络

推荐整理分享PyTorch 深度学习实战 | DIEN 模拟兴趣演化的序列网络,希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!

深度兴趣演化网络(Deep Interest Evolution Network,DIEN)是阿里巴巴团队在2018年推出的另一力作,比DIN 多了一个Evolution,即演化的概念。

在DIEN 模型结构上比DIN 复杂许多,但大家丝毫不用担心,我们将DIEN 拆解开来详细地说明。首先来看从DIEN 论文中截下的模型结构图,如图1所示。

■ 图1 DIEN模型结构全图

这张图初看之下很复杂,但可从简单到难一点点来说明。首先最后输出往前一段的截图如图2所示。

■ 图2 DIEN模型结构局部图(1)

这部分很简单,是一个MLP,下面一些箭头表示经过处理的向量。这些向量会经一个拼接层拼接,然后经几个全连接层,全连接层的激活函数可选择PReLU 或者Dice。最后用了一个Softmax(2)表示二分类,当然也可用Sigmoid进行二分类任务。

对输出端了解过后,再来看输入端,将输入端的部分放大后截图如图3所示。

■ 图3 DIEN模型结构局部图(2)

从右往左看,UserProfile Feature 指用户特征,Context Feature指内容特征,Target Ad指目标物品,其实这3个特征表示的无非是随机初始化一些向量,或者通过特征聚合的方式量化表达各种信息。

DIEN 模型的重点就在图3的user behavior sequence区域。user behavior sequence代表用户行为序列,通常利用用户历史交互的物品代替。图4展示了这块区域的全貌。

■ 图4 DIEN模型结构局部图(3)

这部分是DIEN 算法的核心:

PyTorch 深度学习实战 | DIEN 模拟兴趣演化的序列网络

第一部分: 用户行为序列,是将用户历史交互的物品序列经Embedding层初始化物品序列向量准备输入下一层,代码如下:

#recbyhand\chapter3\s34_DIEN.py#初始化embeddingitems = nn.Embedding( n_items, dim, max_norm = 1 )#[batch_size, len_seqs, dim]item_embs = items(history_seqs)#history_seqs指用户历史物品序列id

所以输出的是一个[批次样本数量,序列长度,向量维度]的张量。

第二部分: 兴趣抽取层,是一个GRU 网络,将上一层的输出在这一层输入。GRU 是RNN 的一个变种,在PyTorch里有现成模型,所以只有以下两行代码。

#recbyhand\chapter3\s34_DIEN.py#初始化gru网络,注意正式写代码时,初始化动作通常写在__init__() 方法里GRU = nn.GRU( dim, dim, batch_first=True)outs, h = GRU(item_embs)

和RNN 网络一样,会有两个输出,一个是outs,是每个GRU 单元输出向量组成的序列,维度是[批次样本数量,序列长度,向量维度],另一个h 指的是最后一个GRU 单元的输出向量。在DIEN 模型中,目前位置处的h 并没有作用,而outs却有两个作用。一个作用是作为下一层的输入,另一个作用是获取辅助loss。

什么是辅助loss,其实DIEN 网络是一个联合训练任务,最终对目标物品的推荐预测可以产生一个损失函数,暂且称为Ltarget,而这里可以利用历史物品的标注得到一个辅助损失函数,此处称为Laux。总的损失函数的计算公式为

其中,α 是辅助损失函数的权重系数,是个超参。DIEN 给出的方法是一个二分类预测,如图5所示。

■ 图5 DIEN模型结构局部图(4)

历史物品标注指的是用户对对应位置的历史物品交互的情况,通常由1和0组成,1表示“感兴趣”,0则表示“不感兴趣”,如图5所示,将GRU 网络输出的outs与历史物品序列的Embedding输入一个二分类的预测模型中即可得到辅助损失函数,代码如下:

#recbyhand\chapter3\s34_DIEN.py#辅助损失函数的计算过程def forwardAuxiliary( self, outs, item_embs, history_labels ):''':param item_embs: 历史序列物品的向量 [ batch_size, len_seqs, dim ]:param outs: 兴趣抽取层GRU网络输出的outs [ batch_size, len_seqs, dim ]:param history_labels: 历史序列物品标注 [ batch_size, len_seqs, 1 ]:return: 辅助损失函数'''#[ batch_size * len_seqs, dim ]item_embs = item_embs.reshape( -1, self.dim )#[ batch_size * len_seqs, dim ]outs = outs.reshape( -1, self.dim )#[ batch_size * len_seqs ]out = torch.sum( outs * item_embs, dim = 1 )#[ batch_size * len_seqs, 1 ]out = torch.unsqueeze( torch.sigmoid( out ), 1 )#[ batch_size * len_seqs,1 ]history_labels = history_labels.reshape( -1, 1 ).float()return self.BCELoss( out, history_labels )

调整张量形状后做点乘,Sigmoid激活后与历史序列物品标注做二分类交叉熵损失函数(BCEloss)。

以上是第二部分兴趣抽取层所做的事情,最后来看最关键的第三部分。

第三部分: 兴趣演化层,主要由一个叫作AUGRU 的网络组成,AUGRU 是在GRU 的基础上增加了注意力机制。全称叫作GRU With Attentional Update Gate。AUGRU 的细节结构如图6所示。

■ 图6 AUGRU 单元细节

02、图书推荐

在大数据时代背景下,统计学作为数据分析领域的基础,被应用于各行各业,其方法发挥着重要作用。为了更广泛地普及统计学知识,培养更多的统计学人才,本书应运而生。

本书融合大量情景案例,轻松理解统计知识;零基础起步商务统计,培养数据价值思维。入门级统计学教程,培养数据价值思维。

作为入门级图书,本书内容安排如下。第1章从不确定性出发,讲述统计学和不确定性的关系,以及统计学中用于描述不确定性的各种概率模型。第2章是参数估计,系统讲述统计学中矩估计和极大似然估计两种常用的参数估计方法,并基于两种方法介绍各种常见概率分布中参数的点估计和区间估计。第3章是假设检验,首先从不确定性的角度探讨实际中的各种决策问题,帮助读者理解假设检验的思想和应用场景,然后系统介绍假设检验的方法论及各种常见推广。第4章是回归分析,首先介绍回归分析的思想和广泛的应用场景,然后系统地介绍各类常用模型,从线性回归到广义线性回归,最终落脚到两种机器学习算法(决策树、神经网络)。

本书特别强调实际应用,因此各个章节都辅以大量的实际案例,在介绍统计学基础知识的同时培养读者使用统计学方法解决实际问题的能力。

本文链接地址:https://www.jiuchutong.com/zhishi/300471.html 转载请保留说明!

上一篇:JS中操作<select>标签选的值(Js中操作数组的方法)

下一篇:WordPress 中的常规设置(wordpress neve)

  • 来料加工与进料加工的相似之处有
  • 税务师考试税法一章节
  • 免征增值税的个体户个税
  • 个税如何变更公司
  • 出差会议纪要模板
  • 其他应收款利息收入会计分录怎么写
  • 小规模可以开红网吗
  • 资产负债表中的货币资金怎么算
  • 累计专项扣除和专项附加扣除
  • 外贸企业一般纳税人申报
  • 支付的保证金
  • 购货发票属于什么科目
  • 其他货币资金是资产类科目吗
  • 分公司借款给总公司
  • 持有的汇票到期后怎么办
  • 收到的出口退税款一直有余额吗
  • 调离工作岗位是什么处分
  • 固定资产减值账务处理怎么做
  • 客户年会赞助是公司账户转嘛
  • 所有者提取的借贷方向
  • win11怎么改名
  • 第三方工具查看对方关注抖音
  • linux中!
  • php strrpos函数
  • 代开专票缴纳的增值税怎么做账?
  • win10如何给文件夹上锁
  • rundll32.exe进程很多
  • mediabrowser.exe是什么
  • 最早的滑盖手机,摄像头可以自动旋转
  • php pulsar
  • 计提坏账准备和转销坏账准备
  • 购买农产品没有发票入帐怎么办
  • yii框架安装
  • 资产负债表和利润表的认定
  • 21年前端面试题
  • 会计凭证出现的问题
  • mysql存储引擎是什么意思
  • python dayup
  • 支付应付账款的文章怎么写的
  • 计划资产产生的股利
  • 销售费用主要包括哪些
  • 固定资产清理科目有余额吗
  • 一般纳税人实际税负怎么核算
  • 信用卡的还款方式怎么查
  • 国有控股企业和国有参股企业的区别
  • 电影剧本稿费多少
  • 应收帐款坏帐损失怎么算
  • 什么时候用税前项目举例说明工程项目
  • 年中重新建账还要年初数吗?
  • mysql5.6怎么用
  • sql查询界面怎么做
  • MySQL去除重复数据
  • iis w3svc
  • centos 空闲磁盘合并
  • mac上安装ios app
  • macos使用方法
  • SWNETSUP.EXE - SWNETSUP是什么进程 有什么用
  • qtask.exe - qtask是什么进程 有什么用
  • win8.1新建桌面
  • Apache 2.0.55 for Linux 下载
  • python import同一目录的其他文件
  • unity 移动应用开发
  • ExtJS 2.0实用简明教程 之获得ExtJS
  • 接入hpool
  • 判断输入的日期是一年中第几天
  • 使用css实现全兼容的方法
  • opengl 渲染yuv
  • javascript有哪些常用的属性和方法
  • 下载一个网页的所有图片
  • dos命令中删除文件命令有哪些
  • python生成docx
  • 爱加密企业版
  • python连接mq
  • JAVASCRIPT THIS详解 面向对象
  • 深圳市国税局咨询电话是多少
  • 电子税务局怎么删除办税员
  • 进出口贸易产品种类
  • 广西国家税务局于红林
  • 国税总局编制这次怎么调整
  • 个人所得税的工资比实际的多
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设