位置: 编程技术 - 正文
推荐整理分享Mongodb聚合函数count、distinct、group如何实现数据聚合操作(mongodb聚合函数mapreduce),希望有所帮助,仅作参考,欢迎阅读内容。
文章相关热门搜索词:mongodb 聚合,mongodb聚合函数,mongo 聚合,mongodb 聚合,mongodb聚合函数,mongodb聚合函数mapreduce,mongodb聚合函数mapreduce,mongodb聚合函数详解,内容如对您有帮助,希望把文章链接给更多的朋友!
上篇文章给大家介绍了Mongodb中MapReduce实现数据聚合方法详解,我们提到过Mongodb中进行数据聚合操作的一种方式——MapReduce,但是在大多数日常使用过程中,我们并不需要使用MapReduce来进行操作。在这边文章中,我们就简单说说用自带的聚合函数进行数据聚合操作的实现。
MongoDB除了基本的查询功能之外,还提供了强大的聚合功能。Mongodb中自带的基本聚合函数有三种:count、distinct和group。下面我们分别来讲述一下这三个基本聚合函数。
(1)count
作用:简单统计集合中符合某种条件的文档数量。
使用方式:db.collection.count(<query>)或者db.collection.find(<query>).count()
参数说明:其中<query>是用于查询的目标条件。如果出了想限定查出来的最大文档数,或者想统计后跳过指定条数的文档,则还需要借助于limit,skip。
举例:
(2)distinct
作用:用于对集合中的文档针进行去重处理
使用方式:db,collection.distinct(field,query)
参数说明:field是去重字段,可以是单个的字段名,也可以是嵌套的字段名;query是查询条件,可以为空;
举例:
db.collection.distinct("user",{“age":{$gt:}});//用于查询年龄age大于岁的不同用户名
除了上面的用法外,还可以使用下面的另外一种方法:
db.runCommand({"distinct":"collectionname","key":"distinctfied","query":<query>})
collectionname:去重统计的集合名,distinctfield:去重字段,,<query>是可选的限制条件;
举例:
这两种方式的区别:第一种方法是对第二种方法的封装,第一种只返回去重统计后的字段值集合,但第二种方式既返回字段值集合也返回统计时的细节信息。
(3)group
作用:用于提供比count、distinct更丰富的统计需求,可以使用js函数控制统计逻辑
使用方式:db.collection.group(key,reduce,initial[,keyf][,cond][,finalize])
备注说明:在2.2版本之前,group操作最多只能返回条分组记录,但是从2.2版本之后到2.4版本,mongodb做了优化,能够支持返回条分组记录返回,如果分组记录的条数大于条,那么可能你就需要其他方式进行统计了,比如聚合管道或者MapReduce;
上面对Mongodb中自带的三种三种聚合函数进行了简单的描述,并对需要注意的地方进行了简单的说明,如果需要深入使用,可以进入Mongodb官网查看相关细节信息,谢谢。
Mongodb中MapReduce实现数据聚合方法详解 Mongodb是针对大数据量环境下诞生的用于保存大数据量的非关系型数据库,针对大量的数据,如何进行统计操作至关重要,那么如何从Mongodb中统计一些数
MongoDB 学习笔记(一)-MongoDB配置 MongoDB简介MongoDB是一个基于分布式文件存储的数据库。由C++语言编写。旨在为WEB应用提供可扩展的高性能数据存储解决方案。MongoDB是一个介于关系数据
MongoDB快速翻页的方法 翻阅数据是MongoDB最常见的操作之一。一个典型的场景是需要在你的用户界面中显示你的结果。如果你是批量处理的数据,同样重要的是要让你的分页策
上一篇:MongoDB实现基于关键词的文章检索功能(C#版)(mongodb应用实例)
下一篇:Mongodb中MapReduce实现数据聚合方法详解
友情链接: 武汉网站建设